

U.S. ARMY CORPS OF ENGINEERS OMAHA DISTRICT

March 1996

EPA Region 5 Records Ctr.

FINAL
PRE-DESIGN TECHNICAL MEMORANDUM
HIMCO DUMP SUPERFUND SITE
ELKHART, INDIANA

Prepared For:

United States Environmental Protection Agency Region 5 Chicago, Illinois

Prepared By:

Department of the Army Corps of Engineers Omaha District Omaha, Nebraska

TABLE OF CONTENTS

			Page
	EXE	CUTIVE SUMMARY	EX-1
1.0	INT	RODUCTION	1-1
	1.1 1.2 1.3 1.4	General Project Objective Investigation Tasks Report Organization	1-1 1-1 1-1 1-3
2.0	SITE	E BACKGROUND AND HISTORY	2-1
3.0	PRE	VIOUS INVESTIGATIONS	3-1
4.0	SITE	E INVESTIGATION TASKS	4-1
	4.1 4.2	Sampling Objectives Sampling Program 4.2.1 Monitoring and Residential Well Survey 4.2.2 Soil Borings/Sampling for Monitoring Wells 4.2.3 Monitoring Well Installation 4.2.4 Monitoring Well Development 4.2.5 Ground Water Elevation Survey 4.2.6 Ground Water Sampling 4.2.7 Monitoring Well Abandonment 4.2.8 Surveying	4-1 4-2 4-2 4-4 4-10 4-12 4-13 4-13 4-14 4-15
5.0	SITE	CHARACTERIZATION	5-1
	5.1 5.2 5.3	Geotechnical Testing of Site Soils Ground Water Flow Contaminant Characterization 5.3.1 Analytical Results - 1995 Ground Water Sampling Round 5.3.2 Comparative Analysis of Ground Water Analytical Results	5-1 5-1 5-7 5-10 5-18
6.0	QUA	LITY CONTROL SUMMARY	6-1
	6.1 6.2	Sampling Procedures Summary of Daily Quality Control Reports and Field Log Books 6.2.1 Work Performed	6-1 6-1

TABLE OF CONTENTS (CONT.)

6.3	Analy	tical Prod	cedures	6-1
6.4	Qualit	ty Contro	l Activities	6-1
	6.4.1	•		6-1
	6.4.2	Field D		6-1
			te Spikes	6-2
		Matrix	•	6-2
	6.4.5	Matrix	Spike Duplicates	6-2
			ory Blanks	6-2
	6.4.7	Laborat	ory Control Samples	6-2
	6.4.8	Rinsate	Blanks	6-2
5.5	Data I	Presentati	on	6-2
	6.5.1	Volatile	Organic Compounds	6-2
			Holding Times	6-2
		6.5.1.2	Method Blanks	6-3
		6.5.1.3	Surrogate Spikes	6-3
		6.5.1.4	Matrix Spike/Matrix Spike Duplicates	6-3
		6.5.1.5	Internal Standards	6-3
		6.5.1.6	Field Duplicates	6-3
		6.5.1.7	Trip Blanks	6-3
		6.5.1.8	Rinsate Blanks	6-3
		6.5.1.9	Overall Assessment	6-6
	6.5.2	Semi-V	olatile Organic Compounds	6-6
		6.5.2.1	Holding Times	6-6
		6.5.2.2	Method Blanks	6-6
		6.5.2.3	Surrogate Spikes	6-7
		6.5.2.4	Matrix Spike/Matrix Spike Duplicates	6-7
		6.5.2.5	Laboratory Duplicate Samples	6-7
		6.5.2.6	Field Duplicates	6-7
		6.5.2.7	Rinsate Blanks	6-7
		6.5.2.8	Overall Assessment	6-7
	6.5.3	Pesticide	es/PCBs	6-7
		6.5.3.1	Holding Times	6-7
		6.5.3.2	Method Blanks	6-8
		6.5.3.3	Surrogate Spikes	6-8
		6.5.3.4	Matrix Spike/Matrix Spike Duplicates	6-8
		6.5.3.5	Laboratory Duplicate Samples	6-8
		6.5.3.6	Field Duplicates	6-8
		6.5.3.7		6-8
		6.5.3.8	Overall Assessment	6-8
	6.5.4		and Cyanide Sample Data Group MEAFG1	6-8
		6.5.4.1	Holding Times	6-8

TABLE OF CONTENTS (CONT.)

		6.5.5	6.5.4.3 6.5.4.4 6.5.4.5 Metals ar	Preparation Blank and Continuing Calibration Blank Matrix Spike and Matrix Spike Duplicate Samples Rinsate Blanks Overall Assessment and Cyanide Sample Data Group MEAFH6 Holding Times	6-9 6-10 6-10 6-10 6-10
	6.6	Overal	6.5.5.2 6.5.5.3 6.5.5.4	Preparation Blank and Continuing Calibration Blank Matrix Spike and Matrix Spike Duplicate Samples Overall Assessment Data Assessment	6-10 6-12 6-12 6-12
7.0	CONC	CLUSIC	ONS		7-1
8.0	REFE	RENC	ES		8-1
	APPE	NDICE	CS		
Append	dix A:	Photog	graphs		
Append	dix B:	Monito	oring Well	Boring Logs	
Append	dix C:	Geotec	hnical Tes	st Results	
Append	dix D:	Monito	oring Well	Construction Diagrams	
Append	dix E:	Monito	oring Well	Development Records	
Append	dix F:	Monito	ring Well	Gauging Forms	
Append	dix G:	Monito	oring Well	Sampling Records	
Append	dix H:	Labora	itory Data		

LIST OF TABLES

<u>Number</u>	<u>Title</u>
4-1	Summary of Monitoring and Residential Well Survey
4-2	Surveying Data
5-1.	Results from Site-Wide Water Level Survey
5-2	Analytical Methods
5-3	USEPA Sample Number to Monitoring Well Correlation Table
5-4	1995 Analytical Data Summary for Ground Water Samples
5-5	Analyte Levels as a Function of Time
6-1	Summary of Rinsate and Trip-Blank Contamination
6-2	Method Blank Contamination
6-3	Preparation and CCB Contamination for SDG MEAFG1
6-4	Rinsate Blank Results
6-5	Preparation and CCB Contamination for SDG MEAFH6

LIST OF PHOTOGRAPHS

<u>Number</u>	<u>Title</u>
1	View to the southwest of the WT101 monitoring well cluster.
2	Closeup of monitoring well WT101A.
3	Closeup of monitoring well WT101B.
4	Closeup of monitoring well WT101C.
5	View to the southeast of the WT102 monitoring well cluster.
6	Closeup of monitoring well WT102A.
7	Closeup of monitoring well WT102B.
8	Closeup of monitoring well WT102C.
9	Closeup of monitoring well WT103A.
10	Closeup of monitoring well WT104A.
11	Closeup of monitoring well WT105A.
12	Closeup of monitoring well WT106A.
13	Closeup of monitoring well WT111A.
14	View to the west of the WTB monitoring well cluster.
15	Closeup of monitoring well WTB1.
16	Closeup of monitoring well WTB2.
17	Closeup of monitoring well WTB3.
18	Closeup of monitoring well WTB4.
19	Closeup of monitoring well WTCP1.
20	Closeup of monitoring well WTE1.

LIST OF PHOTOGRAPHS (CONT.)

Number	<u>Title</u>
21	Closeup of monitoring well WTE2.
22	Closeup of monitoring well WTE3.
23	Closeup of monitoring well WTM1.
24	Closeup of monitoring well WTM2.
25	Closeup of monitoring well WTO1.
26	Closeup of monitoring well WTP1.
27	Closeup of piping in the basement of the connected to residential well RW-06.
28	Closeup of pump and piping which is connected to residential well RW-07 (Property).
29	Closeup of residential well RW-08 (Property).
30	Closeup of residential well RW-09 (Property, formerly owned by
31	Closeup of residential well RW-10 (Property).
32	Monitoring well WTE1 final redevelopment water sample.
33	Monitoring well WTO1 final redevelopment water sample.
34	Monitoring well WT101A final redevelopment water sample.
35	Monitoring well WT101B final redevlopment water sample.
36	Monitoring well WT102A final redevelopment water sample.
37	Monitoring well WT102B final redevelopment water sample.
38	Monitoring well WT111A (mislabelled WT118A) final redevelopment water sample.

LIST OF PHOTOGRAPHS (CONT.)

<u>Number</u>	<u>Title</u>
39	Monitoring well WT112A final development water sample.
40	Monitoring well WT112B final development water sample.
41	Monitoring well WT113A final development water sample.
42	Monitoring well WT113B final development water sample.
43	Monitoring well WT114A final development water sample.
44	Monitoring well WT114B final development water sample.
45	Monitoring well WT115A final development water sample.
46	Monitoring well WT116A final development water sample.
47	Monitoring well WT116B final development water sample.
48	Monitoring well WT117A final development water sample.
49	Monitoring well WT117B final development water sample.
50	Monitoring well WT118B final development water sample.

LIST OF ACRONYMS AND ABBREVIATIONS

Al Aluminum

BGS Below Ground Surface

BOD Biological Oxygen Demand

Ca Calcium

CCB Continuing Calibration Blank

CERCLA Comprehensive Environmental Response, Compensation, and

Liability Act

CLP Contract Laboratory Program COD Chemical Oxygen Demand

CRDL Contract Required Detection Limits

DQCR Daily Quality Control Reports

Fe Iron

FS Feasibility Study FSP Field Sampling Plan

FTLC Full Target List Compound

gpm Gallons per Minute I.D. Inside Diameter

K Potassium

LCS Laboratory Control Sample
MCL Maximum Contaminant Level

Mg Magnesium MRO Omaha District MS Matrix Spike

MSD Matrix Spike Duplicate

MSL Mean Sea Level

Na Sodium

NCP National Contingency Plan

Ni Nickel

NTU Nephelometric Turbidity Unit PCB Polychlorinated Biphenyl

PVC Polyvinyl Chloride QA Quality Assurance

QAPP Quality Assurance Project Plan

QC Quality Control

RI Remedial Investigation ROD Record of Decision

RPD Relative Percent Difference

SARA Superfund Amendment and Reauthorization Act

SOW Scope of Work

SSHP Site Safety and Health Plan

SVOC Semi-volatile Organic Compound

LIST OF ACRONYMS AND ABBREVIATIONS (CONT.)

TIC Tentatively Identified Compound

TM Technical Memorandum

TOC Top of Casing

TSS Total Suspended Solids ug/L Micrograms per Liter

USACE United States Army Corps of Engineers

USCS Unified Soil Classification System

USEPA United States Environmental Protection Agency

VOC Volatile Organic Compound

Zn Zinc

EXECUTIVE SUMMARY

The U.S. Army Corps of Engineers (USACE) Omaha District was requested by the U.S. Environmental Protection Agency (USEPA) to develop a detailed design for the selected remedial action at the Himco Dump Superfund Site as set forth in the Record of Decision (ROD). As part of the design effort, the USEPA requested that additional sampling studies be conducted to supplement the available technical data and to provide the necessary information to more fully characterize the site conditions.

Field work was conducted from July 31 through October 21, 1995. Field work performed included a soil gas survey, a monitoring and residential well survey, the completion of 12 soil borings and the installation of monitoring wells in all of these borings, geotechnical sampling of soils, and analytical testing of ground water from all of the newly installed monitoring wells and 7 of the existing monitoring wells.

Ground water was encountered from approximately 3 to 16 feet below ground surface at elevations ranging from 751 to 757 feet Mean Sea Level (MSL). Ground water elevations showed a relatively flat horizontal hydraulic gradient (average of 0.001 feet/feet) trending south to southeast in the shallow and intermediate portions of the water table aquifer.

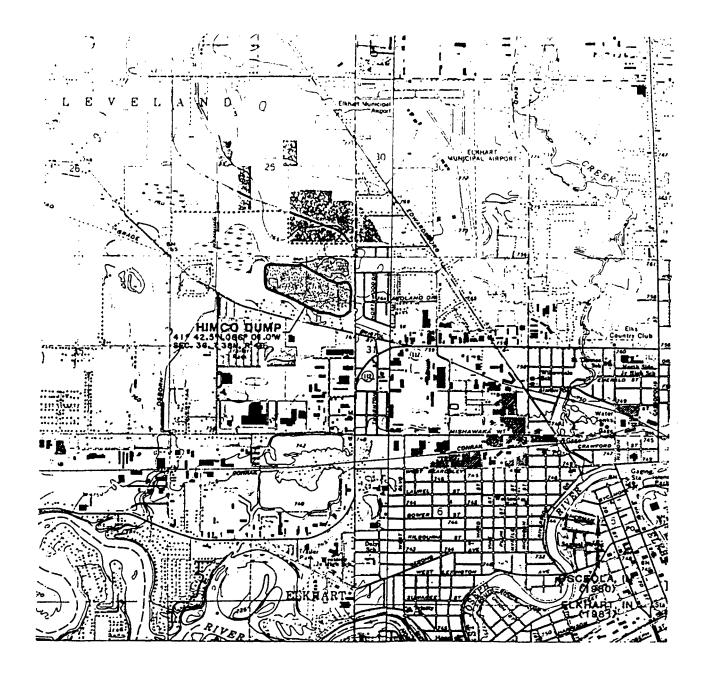
In general, the analytical results from the Pre-Design investigation confirmed and extended the analytical findings of the Remedial Investigation (RI) in that contaminants in the ground water attributable to the Himco Site continue to migrate off-site. Ground water quality both up and down gradient of the Himco Site does not appear to have changed significantly since the RI sampling event with regards to Metals, Volatile Organic Compounds (VOCs), Semi-Volatile Organic Compounds (SVOCs), and Pesticides/Polychlorinated Biphenyls (PCBs).

During the field investigation, construction debris was encountered in borings for monitoring wells WT116A and WT116B. Ground water samples from monitoring well WT116A yielded detects of Benzene at 15 ug/L, which is above the current MCL of 5 ug/L, and numerous previously unreported SVOCs. This data suggests that portions or all of the construction debris area may contain higher levels of contamination than previously recognized and/or a release is occurring from the landfill and is travelling in the ground water beneath the construction debris area.

1.0 INTRODUCTION

1.1 General

This document is prepared as the Pre-Design Technical Memorandum (TM) of findings for studies conducted at the Himco Dump Superfund Site (Himco), located in Elkhart County, Elkhart, Indiana (Figure 1-1). The purpose of this TM is to present a summary of the sampling and analytical activities conducted by the U.S. Army Corps of Engineers (USACE) Omaha District from July 31 through October 21, 1995, along with the findings.


1.2 Project Objective

The major objective of this Pre-Design study (referred to as Remedial Design/Remedial Action Field Activities in the Final Field Sampling Plan) was to gather additional chemical data in order to determine whether ground water quality at the Himco Site has deteriorated since the last sampling round was conducted. The last sampling round occurred during Phase II of the Remedial Investigation (RI) in September of 1991. Site specific sampling objectives are presented in Section 4.0, Site Investigation Tasks. All activities for this project were conducted in accordance with provisions of the Comprehensive Environmental Response, Compensation, and Liability Act/Superfund Amendments and Reauthorization Act of 1986 (CERCLA/SARA), and in accordance with appropriate requirements of the National Contingency Plan (NCP).

1.3 Investigation Tasks

To fulfill the project objective outlined above, the following tasks were completed:

- Review and evaluation of the Remedial Investigation/Feasibility Study (RI/FS) Report (Donohue, 1992) and the Record of Decision (ROD)(EPA, 1993).
- Visual site inspection.
- Preparation of a Field Sampling Plan (FSP) Addendum by USACE personnel, and Quality Assurance Project Plan (QAPP) and Site Safety and Health Plan (SSHP) Addendums by RUST personnel. RUST was contracted by the USACE Omaha District to complete the QAPP and SSHP Addendums due to a shortage of personnel to perform the work in-house.
- Examination and documentation of the condition of 23 existing monitoring wells and 5 residential wells.
- Drilling and sampling of twelve soil borings, and the installation of ground water monitoring wells in each of these borings.

Source:

USGS 7.5 Minute Quadrangle Osceola, Indiana (1980) Elkhart, Indiana (1981)

1 inch equals 2000 feet Scale:

1-2 Figure 1-1 Site Location Map

- Measuring the depth to ground water and obtaining ground water elevation data from 18 existing monitoring wells and 12 newly installed wells.
- Ground water sampling of 19 new and existing monitoring wells.
- Evaluation of physical and chemical data.

These completed tasks resulted from an Interagency Agreement between the USACE Omaha District and the U.S. Environmental Protection Agency (USEPA) Region 5.

1.4 Report Organization

This TM presents all aspects of work conducted by the USACE Omaha District to date at the Himco Site. This includes planning and implementation of the field investigations program, laboratory analyses, data reduction, and qualitative data evaluation. The remainder of this TM is organized into seven sections. Those sections of this TM which reference back to the RI Report for a full discussion of the subject matter include Section 2.0 (Site Background and History), and Section 3.0 (Previous Investigations). Section 4.0 of this TM describes those field activities conducted in the course of the USACE Omaha District's field investigations. Section 5.0 presents site specific data and observations on the hydrogeology, along with summaries of the analytical program and physical tests. Section 6.0 describes the Quality Control (QC) activities and procedures in the field and laboratory, and the usability of the resulting data set. Section 7.0 presents the USACE Omaha District's conclusions. The references cited in the text are listed in Section 8.0.

2.0 SITE BACKGROUND AND HISTORY

A full discussion on the background and history of the Himco Site, including physical characteristics of the site area, is provided in the Final Remedial Investigation Report, Volume 1 (Donohue, 1992).

3.0 PREVIOUS INVESTIGATIONS

A full discussion on the nature and extent of contamination as defined from previous investigations is provided in the Final Remedial Investigation Report, Volume 1 (Donohue, 1992).

4.0 SITE INVESTIGATION TASKS

This section presents an overview of the sampling activities conducted by USACE Omaha District personnel from July 31 through October 21, 1995 for the Pre-Design field investigation. Sampling and analysis activities were performed in accordance with procedures contained in the approved FSP (USACE, 1995) and QAPP (RUST, 1995) Addendums. Deviations from the FSP/QAPP Addendums and/or the original documents they amend, and problems encountered in the field are discussed below. All soil samples collected for geotechnical analyses, along with water samples from a 4,000-gallon poly tank used during this field investigation, were submitted to the USACE Omaha District (MRO) Laboratory for analyses. All ground water samples collected for organic analyses were sent to Ross Analytical Services, Inc., Strongsville, Ohio. All ground water samples collected for inorganic analyses were sent to American Analytical and Technical Services, Baton Rouge, Louisiana.

4.1 Sampling Objectives

The major objective of this Pre-Design study at the Himco Site was to collect additional chemical data in order to determine whether ground water quality has deteriorated since the last sampling round was conducted. The last sampling round occurred during Phase II of the RI in September of 1991. A secondary objective of this field study was to obtain the necessary information for design of a landfill gas collection system. Matrix and site specific sampling objectives included collecting additional data to:'

Subsurface Soil

- Further characterize the stratigraphy and physical properties of the soils.
- Assess the occurrence and levels of methane gas generation.

Ground Water

- Characterize concentrations of organic and inorganic contaminants within the shallow and intermediate portions of the water table aquifer south and east (downgradient) of the landfill boundary.
- Evaluate whether levels of inorganic contamination existing in ground water within the shallow and intermediate portions of the water table aquifer are a result of site activities at the Himco Site of if they are representative of natural background levels.
- Further assess the occurrence of ground water in the shallow and intermediate
 portions of the water table aquifer underneath and immediately adjacent to the
 Himco Site.

4.2 Sampling Program

The following field activities were intended to meet the sampling objectives listed above. The location of all monitoring and residential wells sampled/surveyed during this field investigation are shown in Figure 4-1. A final copy of the report documenting field activities and results for the soil gas sampling was submitted to USEPA Region 5 in the 30% Design Analysis package (dated September 1995), and is not included in this memorandum.

4.2.1 Monitoring and Residential Well Survey

Prior to the installation of any new monitoring wells, a survey of all existing monitoring wells within and immediately adjacent to the Himco Site, along with certain residential wells to the south of the Himco Site along County Road 10, was performed. This included the following: WTB1, WTB2, WTB3, WTB4, WTCP1, WTE1, WTE2, WTE3, WTM1, WTM2, WT01, WTP1, WT101A, WT101B, WT101C, WT102A, WT102B, WT102C, WT103A, WT104A, WT105A, WT106A, WT111A, RW-06, RW-07, RW-08, RW-09, and RW-10. Monitoring wells C1, C3, and C4 were found to have been abandoned between November 12, 1985 and April 17, 1986 (Duwelius and Silcox, 1991). Monitoring wells WTD1, WTD2, WTD3, and WTN1 were also not included in the survey as they could not be located in the field. It is believed that these wells have been abandoned although no record or visual evidence of abandonment exists. Access to residential wells RW-01 and RW-02 was denied by the landowner. Residential wells RW-04 and RW-05 could not be located. According to the property owner, these wells may exist underneath a portion of their residential structure. The approved FSP Addendum indicated the possible existence of a shallow residential well on the property in addition to the deep well. No evidence of this additional well was found.

The monitoring well survey consisted of visually inspecting the protective casing, riser, and bollards. Locks that were present on the protective casings were cut and replaced so that all locks were keyed alike. A water level measurement was taken with an electronic water level indicator, and the depth to the bottom of the well was measured using a weighted tape. A 5-foot long by 1.25-inch nominal diameter polyvinyl chloride (PVC) pipe filled with clean filter pack sand and capped at both ends was then lowered down the riser of all monitoring wells except WT106A in order to ensure that each well was plumb, aligned, and that a ground water sampling pump could be lowered down the well to the screened interval. A 3-foot long by 1.5-inch nominal diameter disposable bailer was used to check the alignment of monitoring well WT106A. The survey of this monitoring well was performed near the end of all field activities associated with the Himco Site due to problems in obtaining the access agreement in a timely fashion.

The residential well survey consisted of visually inspecting the well head and interior of the casing if it could be opened; however, no measuring equipment was introduced into any of the wells. Photographs of all monitoring and residential wells or their associated pump/piping may be found in Appendix A of this document.

1	Symbol	Describactis		nate whhlosen	
}					
j					
		U.S. ARMY ENGINEER D	DISTRICT		
		CORPS OF ENGINE			
		OMAHA, NEBRASK			
: 200 FEET	Designed by:		KHART, INDIANA	j	Α
200 FEET	R.J.G.	REMI	EDIAL ACTION		
	Drawn by:	HIMCO DUM	P SUPERFU	IND SITE	
	J.A.H.	MONITORING A	AND RESIDENT	IAL WELL	
	Checked by:	LOC	CATION MAP		
	R.J.G.				
OMPUTER	Reviewed by:	Plot Scale Ratio: 200:1	Date:	Sheet	
A :DED	x	Design File: EH01200PG3.dgn	X	reference number:	
DESIGN &	Submitted by:	Spec. No.: DACA 45	Drawing Code:		
DRAFTING)	Chief: GEOLOGY A Section	Contract No.: DACA 45	X	GX.XX	
		1			

A summary of the monitoring and residential well survey is located in Table 4-1. In general, all the existing monitoring wells installed during the RI were found to be in good condition; however, suitable concrete well pads were not noted at any of these wells. A protective bollard was replaced at WT101B, and one was added at WT105A. All existing USGS wells with aboveground completions were also found to be in good condition, although these wells did not have outer protective casings, bollards, or a concrete well pad. None of the USGS wells with flushmount completions appeared to have manholes which were properly grouted in. In addition, all of these flush-mount wells had a considerable amount of soil inside the manhole. Protective casings and bollards were installed at the following USGS wells which were recommended for future ground water monitoring: WTB1 through WTB4, WTE1, and WTE3. USACE had recommended that the manhole be replaced at WTO1; however, this was inadvertently overlooked. Should this well be used for future ground water monitoring as recommended by the USACE, then the manhole should be replaced and a locking well cap installed. A total of five wells were abandoned during this Pre-Design field effort. USGS monitoring wells WTE2 and WTP1 were abandoned due to obstructions located approximately 8.4 and 6.2 feet, respectively, below the top of the well riser. USGS wells WTCP1, WTM1, and WTM2 were abandoned as they were located within or immediately adjacent to the landfill. In addition, accumulated sediment in the screened interval of monitoring wells WTB2, WTB3, WTE3, and WT102C was removed.

Residential wells RW-06 and RW-07 have apparently been capped and no further action is required. Wells RW-08 and RW-09 are no longer in use, and it is recommended that these wells be abandoned. Well RW-10 is currently used by the landowner for watering their lawn and garden, and no further action is recommended as this well appears to be in good condition and constructed properly.

4.2.2 Soil Borings/Sampling for Monitoring Wells

A total of twelve soil borings were drilled and sampled at various locations around the Himco Site for the installation of monitoring wells. Originally, eleven soil borings/monitoring wells were proposed. Boring/well WT113B was added as a replacement for WTD3, which had been determined during the well survey to have been abandoned in the past. Borings for monitoring wells WT114A and WT114B were relocated approximately 140 feet from their original proposed location to the east side of John Weaver Parkway (Nappanee Street Extension) after encountering the calcium sulfate layer and landfill refuse while drilling at the original staked location. The original boring for monitoring well WT117B was abandoned due to difficulties in setting the subsurface casing. A new boring for the monitoring well was completed approximately 10 feet south of the first location.

All borings were completed with a Gus Pech 1100C truck-mounted drilling rig. Shallow monitoring well borings were drilled using 4 1/4-inch inside diameter (I.D.) hollow-stem augers, and intermediate monitoring well borings were drilled using 6 1/4-inch I.D. hollow-stem augers. The approved FSP Addendum called for the use of a CME continuous sample tube to obtain soil samples. This sampler was used for a portion of the first boring drilled (WT113B), then was

TABLE 4-1 SUMMARY OF MONITORING AND RESIDENTIAL WELL SURVEY PRE-DESIGN TECHNICAL MEMORANDUM HIMCO DUMP SUPERFUND SITE ELKHART, INDIANA

WELL	CONDITION	WA	TER LEVEL IN	FORMATION	(1) TOTAL	ALIGNMENT	RECOMMENDED
NO.	OF WELL	DATE	ELEVATION (FT)	(1) DEPTH (FT)	DEPTH (FT)	TEST	ACTION
	GOOD CONDITION; LACKS SUITABLE CONCRETE WELL PAD.	8/5/95	752.19	9.81	16.22	SLUG PASSED THROUGH ENTIRE LENGTH OF WELL.	CONTINUE USING FOR GROUND WATER SAMPLES AND ELEVATIONS.
WT1018 (MIDDLE WELL IN CLUSTER)	GOOD CONDITION; ONE PROTECTIVE POST DISTURBED (45 SLANT); LACKS SUITABLE CONCRETE WELL PAD.	8/5/95	752.14	9.76	98.47	SLUG PASSED THROUGH ENTIRE LENGTH OF WELL.	REPLACE PROTECTIVE POST, CONTINUE USING FOR GROUND WATER SAMPLES AND ELEVATIONS.
WT101C (SOUTHERN WELL IN CLUSTER	GOOD CONDITION: LACKS SUITABLE CONCRETE WELL PAD.	8/5/95	751.97	9.43	164.58	SLUG PASSED THROUGH ENTIRE LENGTH OF WELL.	CONTINUE USING FOR GROUND WATER ELEVATIONS.
(SOUTHERN	GOOD CONDITION; LACKS SUITABLE CONCRETE WELL PAD.	8/4/95	757.22	9.48	15.62	SLUG PASSED THROUGH ENTIRE LENGTH OF WELL.	CONTINUE USING FOR GROUND WATER SAMPLES AND ELEVATIONS.
WT102B (NORTHERN WELL IN CLUSTER)	GOOD CONDITION: LACKS SUITABLE CONCRETE WELL PAD.	8/4/95	757.24	9.16	64.7	SLUG PASSED THROUGH ENTIRE LENGTH OF WELL.	CONTINUE USING FOR GROUND WATER SAMPLES AND ELEVATIONS.
WT102C (MIDDLE WELL IN CLUSTER)	GOOD CONDITION: LACKS SUITABLE CONCRETE WELL PAD.	8/4/95	757.94	8.36	157.52	SLUG PASSED THROUGH ENTIRE LENGTH OF WELL.	CONTINUE USING FOR GROUND WATER ELEVATIONS.
WT103A	GOOD CONDITION: LACKS SUITABLE CONCRETE WELL PAD.	8/8/95	754.21	3.94	15.92	SLUG PASSED THROUGH ENTIRE LENGTH OF WELL.	CONTINUE USING FOR GROUND WATER ELEVATIONS.
WT104A	GOOD CONDITION; LACKS SUITABLE CONCRETE WELL PAD.	9/23/95	751.77	11.22	16.22		CONTINUE USING FOR GROUND WATER ELEVATIONS.
WT105A	ONLY 2 PROTECTIVE POSTS: LACKS SUITABLE CONCRETE WELL PAD.	8/8/95	751.99	8.31	16.04	THROUGH ENTIRE	PUT IN THIRD PROTECTIVE POST: CONTINUE USING FOR GROUND WATER ELEVATIONS.
WT106A	ONE PROTECTIVE POST LOOSE; LACKS SUITABLE CONCRETE WELL PAD.	8/8/95	751.77	7.43	15.98	SLUG PASSED THROUGH ENTIRE LENGTH OF WELL.	CONTINUE USING FOR GROUND WATER ELEVATIONS.
NOTES	DEPTH IS REFERENCED TO	THE CROWNE	CUREACE			L	

NOTES: 1. DEPTH IS REFERENCED TO THE GROUND SURFACE.
2. N/A-DATA NOT AVAILABLE OR NOT APPLICABLE. SEE COMMENT UNDER HEADING ' CONDITION OF WELL' FOR EXPLANATION.

TABLE 4-1 (CONTINUED) SUMMARY OF MONITORING AND RESIDENTIAL WELL SURVEY PRE-DESIGN TECHNICAL MEMORANDUM HIMCO DUMP SUPERFUND SITE ELKHART, INDIANA

WELL	CONDITION	WA	TER LEVEL IN	FORMATION	TOTAL	ALIGNMENT	RECOMMENDED
NO.	OF WELL	DATE	ELEVATION (FT)	(1) DEPTH (FT)	DEPTH (FT)	TEST	ACTION
	GOOD CONDITION; LACKS SUITABLE CONCRETE WELL PAD.	8/7/95	753.02	11.38	19.76	SLUG PASSED THROUGH ENTIRE LENGTH OF WELL.	CONTINUE USING FOR GROUND WATER SAMPLES AND ELEVATIONS.
WESTERN	NO OUTER PROTECTIVE CASING , POSTS. OR CONCRETE WELL PADS.	8/7/95	755.67	6.13	200+ (INSUFFICIENT TAPE LENGTH TO MEASURE BOTTOM OF HOLE)	BOTTOM OF SLUG PASSED THRU 325' OF WELL (INSUFFICIENT AMOUNT OF LINE TO REACH BOTTOM).	INSTALL PROTECTIVE CASING AND POSTS; CONTINUE TO USE FOR GROUND WATER ELEVATIONS.
WTB2 (3RD WELL FROM THE EAST IN CLUSTER)	NO OUTER PROTECTIVE CASING , POSTS, OR CONCRETE WELL PAD.	8/7/95	755.09	6.11	7.64	SLUG PASSED THROUGH ENTIRE LENGTH OF WELL.	INSTALL PROTECTIVE CASING AND POSTS; CONTINUE TO USE FOR GROUND WATER ELEVATIONS.
	NO OUTER PROTECTIVE CASING, POSTS, OR CONCRETE WELL PAD.	8/7/95	755.38	5.72	116.75	SLUG PASSED THROUGH ENTIRE LENGTH OF WELL.	INSTALL PROTECTIVE CASING AND POSTS: CONTINUE TO USE FOR GROUND WATER ELEVATIONS.
WTB4 (EASTERN WELL IN CLUSTER)	NO OUTER PROTECTIVE CASING, POSTS, OR CONCRETE WELL PAD.	8/7/95	755.18	. 5.92	172.77	SLUG PASSED THROUGH ENTIRE LENGTH OF WELL.	INSTALL PROTECTIVE CASING AND POSTS: CONTINUE TO USE FOR GROUND WATER ELEVATIONS.
C1	ABANDONED.	² N/A	N/A	N/A	N/A	N/A	N/A
СЗ	ABANDONED.	N/A	N/A	N/A	N/A	N/A	N/A
C4	ABANDONED	N/A	N/A	N/A	N/A	N/A	N/A
	NO OUTER PROTECTIVE CASING, POSTS, OR CONCRETE WELL PAD. WELL WAS ABANDONED PRIOR TO OBTAINING WELL RISER ELEVATION AND STICKUP.	8/10/95	N/A	N/A			ABANDON-TOO CLOSE TO LANDFILL BOUNDARY.
WTD1	ABANDONED.	N/A	N/A	N/A	N/A	N/A	N/A

NOTES: 1. DEPTH IS REFERENCED TO THE GROUND SURFACE.
2. N/A-DATA NOT AVAILABLE OR NOT APPLICABLE. SEE COMMENT UNDER HEADING 'CONDITION OF WELL' FOR EXPLANATION.

TABLE 4-1 (CONTINUED) SUMMARY OF MONITORING AND RESIDENTIAL WELL SURVEY PRE-DESIGN TECHNICAL MEMORANDUM HIMCO DUMP SUPERFUND SITE ELKHART, INDIANA

WELL	CONDITION	WA	TER LEVEL IN	FORMATION	(1) TOTAL	ALIGNMENT	RECOMMENDED
NO.	OF WELL	DATE	ELEVATION (FT)	(1) DEPTH (FT)	DEPTH (FT)	TEST	ACTION
WTD2	ABANDONED.	N/A	N/A	N/A	N/A	N/A	N/A
WTD3	ABANDONED.	N/A	N/A	N/A	N/A	N/A	N/A
WTE1 (NORTHERN WELL IN CLUSTER)	NO OUTER PROTECTIVE CASING, POSTS, OR CONCRETE WELL PAD.	8/5/95	752.32	10.58	68.57	ENTIRE LENGTH OF	INSTALL PROTECTIVE CASING AND POSTS; CONTINUE TO USE FOR GROUND WATER SAMPLES AND ELEVATIONS.
	NO OUTER PROTECTIVE CASING, POSTS, OR CONCRETE WELL PAD.	8/5/95	N/A	10.80	12.52	BOTTOM OF SLUG DID NOT PASS BEYOND 8.44' BELOW TOP OF RISER.	ABANDON.
WTE3 (SOUTHERN WELL IN CLUSTER)	NO OUTER PROTECTIVE CASING, POSTS, OR CONCRETE WELL PAD.	8/5/95	752.19	10.41	172.84	ENTIRE LENGTH OF	INSTALL PROTECTIVE CASING AND POSTS: CONTINUE TO USE FOR GROUND WATER SAMPLES AND ELEVATIONS.
WTM1 (NORTHERN WELL IN CLUSTER)	NO OUTER PROTECTIVE CASING, POSTS, OR CONCRETE WELL PAD.	8/8/95	· N/A	16.54		SLUG PASSED THROUGH ENTIRE LENGTH OF WELL.	ABANDON-ON LANDFILL.
WTM2 (SOUTHERN WELL IN CLUSTER)	NO OUTER PROTECTIVE CASING, POSTS, OR CONCRETE WELL PAD.	8/8/95	N/A	14.93	22.90	BOTTOM OF SLUG PASSED TO 17.9' BELOW THE TOP OF THE RISER.	ABANDON-ON LANDFILL.
WTNI	ABANDONED.	N/A	N/A	N/A	N/A	N/A	N/A
	MANHOLE DOES NOT APPEAR TO BE PROPERLY GROUTED; SOIL INSIDE MANHOLE TO WITHIN 1' OF TOP OF RISER; THREADED PROTECTIVE CAP.	8/5/95	751.71	11.12	29.78	ENTIRE LENGTH OF WELL.	REPLACE MANHOLE AND INSTALL A LOCKING CAP; CONTINUE USING FOR GROUND WATER SAMPLES AND ELEVATIONS.
WTP1	MANHOLE DOES NOT APPEAR TO BE PROPERLY GROUTED; SOIL INSIDE MANHOLE TO WITHIN 1° OF TOP OF RISER; WELL RISER IS NOT VERTICAL AT THE TOP; THREADED PROTECTIVE CAP.	8/5/95	N/A	9.62	20.71	BOTTOM OF SLUG DID NOT PASS BEYOND 6.25' BELOW TOP OF RISER.	ABANDON.

NOTES: 1. DEPTH IS REFERENCED TO THE GROUND SURFACE.
2. N/A-DATA NOT AVAILABLE OR NOT APPLICABLE. SEE COMMENT UNDER HEADING 'CONDITION OF WELL' FOR EXPLANATION.

TABLE 4-1 (CONTINUED) SUMMARY OF MONITORING AND RESIDENTIAL WELL SURVEY PRE-DESIGN TECHNICAL MEMORANDUM HIMCO DUMP SUPERFUND SITE ELKHART, INDIANA

CONDITION -			FORMATION	''' TOTAL	AL I GNMENT	RECOMMENDED
OF WELL	DATE	ELEVATION (FT)	(I) DEPTH (FT)	DEPTH (FT)	TEST	ACTION
ACCESS TO WELL DENIED BY LANDOWNER.	N/A	N/A	N/A	N/A	N/A	N/A
ACCESS TO WELL DENIED BY LANDOWNER.	N/A	N/A	N/A	N/A	N/A	N/A
UNABLE TO LOCATE WELL HEAD. LANDOWNER UNSURE OF LOCATION.	N/A	N/A	N/A	N/A	N/A	N/A
UNABLE TO LOCATE WELL HEAD. LANDOWNER UNSURE OF LOCATION.	N/A	N/A	N/A	N/A	N/A	N/A
WELL LOCATED INSIDE GARAGE: OWNER INDICATED WELL WAS NO LONGER IN USE AND HAD BEEN CAPPED.	N/A	N/A	N/A	N/A	N/A	NO FURTHER ACTION.
WELL LOCATED IN BASEMENT: OWNER INDICATED WELL WAS NO LONGER IN USE AND HAD BEEN CAPPED.	N/A	N/A	N/A	N/A	N/A	NO FURTHER ACTION.
WELL INTACT: PUMP IS IN WELL AND ELECTRIC SERVICE IS IN PLACE: WELL APPEARS TO BE IN GOOD CONDITION.	N/A	N/A	N/A	N/A	N/A	WELL IS NO LONGER IN USE AND SHOULD BE PROPERLY ABANDONED.
VELL INTACT AND WITHIN A.6' SQUARE BY 3'HIGH CONCRETE BLOCK STRUCTURE WITH REMOVABLE WOOD ROOF; NO ELECTRIC SERVICE; OLDER WELL, PRESUMABLY SHALLOW.	N/A	N/A	N/A	N/A	N/A	WELL IS NO LONGER IN USE AND SHOULD BE PROPERLY ABANDONED.
WELL INTACT: COULD NOT REMOVE WELL CAP: FROM OUTWARD APPEARANCE: WELL WAS PROPERLY CONSTRUCTED TO CURRENT STANDARDS.	N/A	N/A	N/A	N/A	N/A	WELL IS CURRENTLY USED BY LANDOWNER FOR WATERING LAWN. NO FURTHER ACTION.
1 - 41 - 110	ACCESS TO WELL DENIED BY LANDOWNER. ACCESS TO WELL DENIED BY LANDOWNER. ACCESS TO WELL DENIED BY LANDOWNER. UNABLE TO LOCATE WELL HEAD. LANDOWNER UNSURE OF LOCATION. UNABLE TO LOCATE WELL HEAD. LANDOWNER UNSURE OF LOCATION. WELL LOCATED INSIDE GARAGE; OWNER INDICATED WELL WAS NO LONGER IN USE AND HAD BEEN CAPPED. WELL LOCATED IN BASEMENT; OWNER INDICATED WELL WAS NO LONGER IN USE AND HAD BEEN CAPPED. WELL INTACT; PUMP IS IN WELL AND ELECTRIC SERVICE IS IN PLACE; WELL APPEARS TO BE IN GOOD CONDITION. ELL INTACT; AND WITHIN A.6 BLOCK STRUCTURE WITH EMOVABLE WOOD ROOF; NO LECTRIC SERVICE; OLDER WELL INTACT; COULD NOT REMOVE WELL CAP; FROM WAS PROPERLY CONSTRUCTED	ACCESS TO WELL DENIED BY LANDOWNER. ACCESS TO WELL DENIED BY LANDOWNER. N/A UNABLE TO LOCATE WELL HEAD. LANDOWNER UNSURE OF LOCATION. UNABLE TO LOCATE WELL HEAD. LANDOWNER UNSURE OF LOCATION. WELL LOCATED INSIDE GARAGE; OWNER INDICATED WELL WAS NO LONGER IN USE AND HAD BEEN CAPPED. WELL LOCATED IN BASEMENT; OWNER INDICATED WELL WAS NO LONGER IN USE AND HAD BEEN CAPPED. WELL INTACT; PUMP IS IN WELL AND ELECTRIC SERVICE IS IN PLACE; WELL APPEARS TO BE IN GOOD CONDITION. WELL INTACT; AND WITHIN A.6 SUARE BY 3'HIGH CONCRETE BLOCK STRUCTURE WITH REMOVABLE WOOD ROOF; NO LECTRIC SERVICE; OLDER WELL, PRESUMABLY SHALLOW. WELL INTACT; COULD NOT REMOVE WELL CAP; FROM WELL INTACT; COULD NOT REMOVE WELL CAP; FROM WELL INTACT; COULD NOT REMOVE WELL CAP; FROM WAS PROPERLY CONSTRUCTED	ACCESS TO WELL DENIED BY LANDOWNER. N/A ACCESS TO WELL DENIED BY LANDOWNER. N/A N/A N/A N/A N/A N/A N/A N/	CCESS TO WELL DENIED BY ANDOWNER. N/A N/A N/A N/A N/A N/A N/A N/	INCEESS TO WELL DENIED BY ANDOWNER. N/A N/A N/A N/A N/A N/A N/A N/	INCESS TO WELL DENIED BY AND

NOTES: 1. DEPTH IS REFERENCED TO THE GROUND SURFACE.
2. N/A-DATA NOT AVAILABLE OR NOT APPLICABLE. SEE COMMENT UNDER HEADING 'CONDITION OF WELL' FOR EXPLANATION.

replaced with a 2-inch diameter carbon steel split-spoon for the remainder of the drilling due to heaving sands and bad sample recovery with the CME sampler. The split-spoons were driven by a 140-pound automatic trip hammer.

The drilling equipment was decontaminated between each borehole while the drill rig was decontaminated between sites (each nested well location is considered a site). A decontamination (decon) area was set up on the southeastern portion of the site. This decon area did not impact drilling or sampling operations and was located close to County Road 10 off of the landfill. Decon fluids were collected in a bermed, sloping decon pad and pumped into 450-gallon poly tanks that were later emptied into a 4,000-gallon trailer mounted poly tank. Clean drilling equipment was kept off of the ground by sawhorses or racks that were located on the rig. Steam cleaning was performed using a high temperature steam cleaner. The water source for all decon and drilling activities was a fire hydrant located at the intersection of County Road 10 and John Weaver Parkway. Sediment from the decon pad was dewatered, containerized in a 55-gallon drum, and disposed of by the USACE. Drill cuttings from the first five feet for borings WT115A, WT116A, WT116B, WT117A, WT117B and WT118B were containerized in 55-gallon drums and spread out on the landfill. Drill cuttings and excess samples generated for wells WT112A, WT112B, WT113A, WT113B, WT114A, and WT114B were spread out evenly on the ground around their respective borings.

Sampling for lithologic logging was performed along the entire length of the deeper borings (B designations) at well sites 113, 116, and 117. The shallow borings (A designations) at these sites were augered down to the screened interval of the monitoring well to be installed, and a sample was then obtained for logging purposes. Sampling for lithologic logging was performed in both the shallow and deep borings at well sites 112 and 114. The shallow boring at each of these sites were sampled to the bottom of the hole. The deeper borings at these sites were augered down to approximately the bottom of the adjacent shallow boring, then sampling occurred to the bottom of the deeper boring. Borings WT115A and WT118B did not have an associated nested well, and were sampled for lithologic logging along their entire lengths. Boring WT113B was continuously sampled down to 25 feet below ground surface using the CME continuous sample tube, then every 5 feet thereafter to the bottom of the hole using split-spoons. The remaining borings that were sampled were done so with split-spoons on 5-foot centers. All soil samples were inspected and classified by a geologist using the Unified Soil Classification System (USCS). Logs for all the soil borings are presented in Appendix B.

Eleven representative disturbed soil samples were retained from the borings at the screened interval for geotechnical analyses. A geotechnical sample was inadvertently not retained from shallow boring WT113A. The results of the geotechnical testing may be found in Appendix C. Disturbed samples were visually examined and classified, with similar soils grouped together. A representative soil sample from each group was tested for grain size distribution and Atterberg limits.

4.2.3 Monitoring Well Installation

A total of twelve ground water monitoring wells were installed at various locations and depths around the Himco Site. Six monitoring wells were completed in the shallow portion of the aquifer, and six in the intermediate portion of the aquifer. The shallow aquifer monitoring wells were installed within soil borings previously numbered WT112A, WT113A, WT114A, WT115A, WT116A, and WT117A. The six intermediate wells constructed are WT112B, WT113B, WT114B, WT116B, WT117B, and WT118B. Monitoring wells WT112A, WT112B, WT113A, and WT113B were constructed upgradient of the area impacted by site activities to provide additional background ground water data. Wells WT114A and WT114B were constructed downgradient of the eastern-most landfill boundary along the east side of the John Weaver Parkway. Wells WT115A, WT116A, WT116B, WT117A, and WT117B are located near the downgradient (south) edge of the landfill.

A brief outline of the equipment and methodologies used to complete the borings for well installations may be found in Paragraph 4.2.2, Soil Borings/Sampling for Monitoring Wells. Well installation was performed within 4 1/4-inch I.D. hollow-stem augers for all shallow monitoring wells, and 6 1/4-inch I.D. hollow-stem augers for all intermediate monitoring wells.

Shallow monitoring wells were installed to depths (to the bottom of the screened interval) ranging from 12.6 to 22.0 feet below ground surface (bgs), with the well screens placed across the water table. Intermediate monitoring wells were installed to depths ranging from 58.4 to 67.2 feet bgs, with the well screens placed to monitor the middle portion of the aquifer. Well construction diagrams may be found in Appendix D.

All well casings and screens are constructed of threaded, flush-joint, 2-inch nominal diameter Schedule 40 PVC. A 0.2-foot long cap was placed at the base of the screen. All well screens are a continuous-wrap design with 0.020-inch slot size. Screen lengths range from 5 feet for intermediate wells to 10 feet for shallow wells. No adhesives or solvents were used to join sections of well casing or screen. Prior to installation, all well materials were steam cleaned and protected by plastic sheeting if not immediately installed.

A filter pack consisting of Colorado Silica Sand 16-30 was poured down the annular space between the well screen and augers. Figure 4-2 shows the gradations of this filter pack. The bottom of the well screens were placed above 0.4 to 2.2 feet of filter pack sand, and the filter pack extends from 0.5 to 11.2 feet above the top of the well screen. A 1.0 to 10.5 foot thick seal of bentonite slurry or 3/8-inch diameter bentonite pellets was placed directly above the filter pack. The bentonite seal for intermediate wells WT112B, WT114B, and WT116B consists of Enviroplug High Solids Bentonite Grout manufactured by Wyo-Ben, Inc. The decision to change the type of bentonite seal was made after encountering heaving sands, which had made it difficult for the bentonite pellets to be placed. The bentonite grout was tremied into place while the bentonite pellets were poured down the annular space between the well riser and augers. A cement-bentonite grout mixture was then tremied into the remaining annular space up to the


The Tyler Standard Screen Scale Fourth Root of Two Series for Closer Sizing 16-30 Production Cumulative Direct Diagram of Screen Analysis on Sample of_____ ame Effective Size 616mm U.C. 1.44 Date 100 5391mm 50 Pan 16 20

WEIGHT

CENT

PER

CUMULATIVE

ground surface. The proportions of this grout mixture were one 94-pound bag of Portland Cement Type I, 6 to 7 gallons of water, and 3 pounds of bentonite powder.

Surface completions for the monitoring wells deviated from the approved FSP Addendum in that the protective posts were initially set inside the concrete pad rather than the outside. After the pads had time to settle, it was noticed that there was no definite slope away from the well. The existing pads were broken up and the posts removed. New concrete pads were constructed measuring 3-feet square by 4-inch thick. Three 2-inch diameter steel posts were equally spaced around the well outside the concrete pads and grouted in. The concrete was spread so that it slopes away from the well. The outside of the casing and protective posts were painted orange and an 1/8-inch diameter drainage hole was drilled into the outer protective casing just above the level of the bentonite-cement grout that occupies the space between the protective casing and the well riser. The well risers were cut off between 2.0 and 2.8 feet above ground surface and water tight expandable caps were installed. Wells WT114A and WT114B were originally scheduled for completion as flush mount wells, but were completed as above ground monitoring wells after they were relocated as they are sufficiently far away from John Weaver Parkway, and are not considered a hazard to vehicles.

4.2.4 Monitoring Well Development

All newly installed wells were developed subsequent to installation, along with seven of the existing wells (WTE1, WTO1, WT101A, WT101B, WT102A, WT102B, and WT111A). The newly installed wells were allowed to sit undisturbed for 1 to 11 days after completion of grouting prior to initiating development. Only monitoring well WT115A was developed one day after the completion of grouting. This unusually short time frame is not believed to have had any adverse impact on the well or the ground water analytical data which was subsequently obtained. Similar values of pH, temperature, and dissolved oxygen were obtained from ground water in WT115A and other shallow monitoring wells in the area (WT101A and WT116A) during the development and/or sampling. All development water was containerized at the individual well sites, and later transferred to the 4,000-gallon poly tank.

Prior to development, the depth to water and total depth of the well were determined with an electronic water level indicator. This data was used to calculate the quantity of water in the casing. All monitoring wells were developed by mechanical surging and pumping. A 4-inch diameter sand pump (a type of bailer) and the drill rig was used to surge monitoring well WTE1, then a 4-inch diameter Grundfos submersible pump was used for continuous pumping. Development was accomplished in the remainder of the wells using a 2-inch nominal diameter QED Well Wizard positive displacement pump. Surge rings were attached to the pump so that surging and pumping were performed concurrently. Surging was accomplished by raising and lowering the bailer or pump intake within the screened interval. Surging continued until the water in the well began to visually clear up. At that time, the well was continuously pumped. Temperature, pH, specific conductivity and turbidity were periodically monitored during the continuous pumping. These readings, along with the amount of water removed from the well, were recorded on well development records. Well development records may be found in Appendix E. The only instrument malfunction to occur involved the turbidity meter while developing monitoring well WT113B.

Well development was considered complete when the temperature, pH, and specific conductivity had stabilized, and the water was relatively clear and free of fines. The specific conductivity and temperature were considered stabilized when there was less than a 10% change between four consecutive readings. The pH was considered stabilized when there was a difference of no more than 0.2 pH units between four consecutive readings. The pH, temperature, and conductivity generally stabilized relatively quickly after the initiation of continuous pumping. Occasionally one of these parameters would not stabilize, especially the specific conductivity. Failure of conductivity levels to stabilize may have been related to higher turbidity levels which were encountered in some wells. Turbidity was the most difficult parameter in terms of reaching the desired goal (5 nephelometric turbidity units (NTUs) or less). Only monitoring wells WT102B and WT117B were under the criteria for turbidity levels. Monitoring wells WTO1, WT115A, WT117A, and WT118B all exhibited relatively higher turbidities (greater than 50 NTUs) upon completion of development. During the purging process for ground water sampling, turbidities were noticeably lower in all the monitoring wells due to the low-flow sampling method employed.

The final water withdrawn from the well during development was collected in a 1 liter clear glass jar, labelled, and immediately photographed with a 35mm color photo. Photographs of the final development waters may be found in Appendix A of this document.

Accumulated sediment was removed from the screened intervals of existing monitoring wells WTB2, WTB3, WTE3, and WT102C. The Well Wizard pump used for development was also used to clean the sediment out of these wells. The pump was lowered to the bottom of these wells and pumped for five to ten minutes. The water and sediment that was removed was containerized in a 425-gallon poly tank, and later transferred to the 4,000-gallon poly tank.

4.2.5 Ground Water Elevation Survey

A complete round of ground water elevation measurements were obtained from the twelve newly installed wells and seventeen existing wells on September 16, 1995. This site-wide ground water elevation survey was conducted prior to ground water sampling activities. Measurements from all wells were completed within an 8-hour period in order to reduce external variables such as weather conditions. Prior to taking water level measurements, the well caps were removed and all monitoring wells were allowed to vent for a minimum of 30 minutes. The depth to water and total depth of the well were then determined with an electronic water level indicator. Water levels were rechecked between 30 minutes to nearly 7 hours later to ensure that water levels had stabilized. Ground water elevation data is summarized in Section 5.0, Site Characterization. Well gauging forms may be found in Appendix F.

4.2.6 Ground Water Sampling

Ground water samples were collected from each of the twelve newly installed wells, and seven of the existing wells (WTE1, WTO1, WT101A, WT101B, WT102A, WT102B, and WT111A) between September 18th and 29th, 1995. The water source for drilling and decon purposes (fire

hydrant) was also sampled, as well as the contents in the 4,000-gallon poly tank for disposal purposes. Wells were allowed to stabilize for 22 to 35 days after development/redevelopment prior to sampling. All ground water samples were analyzed for Volatile Organic Compounds (VOCs), Semi-Volatile Organic Compounds (SVOCs), Pesticides/Polychlorinated Biphenyls (PCBs), and Metals. The contents of the poly tank were analyzed for VOCs, Chemical Oxygen Demand (COD), Biological Oxygen Demand (BOD), and Total Suspended Solids (TSS). Personnel from EIS Environmental Engineers, Inc. of South Bend, Indiana were on-site to observe all ground water sampling activities. Split-samples were collected for each analyte at each monitoring well by USACE personnel, and handed to the EIS representative. The ground water analytical results are summarized in Section 5.0, Site Characterization. The following procedures were used in the collection of ground water samples.

Prior to purging and sampling a well, the static water level was measured with an electronic water level indicator. This data was used to calculate the quantity of water in the casing. The submersible pump was lowered down the well such that the pump intake was located within the screened interval, and a minimum of five submerged casing volumes of water was then purged from the well. Purge rates and volumes ranged from 0.1 to 2 gallons per minute (gpm) and 5 to 350 gallons, respectively. Water quality parameters (temperature, specific conductivity, pH, dissolved oxygen, and turbidity) were measured with the use of a QED FC2000 flow-through cell at the start of purging, and approximately every well volume or multiple of thereafter. Dissolved oxygen readings were not obtained during the purging of monitoring well WTE1 due to equipment problems. Purging continued beyond the five casing volumes until the parameters had stabilized, then ground water samples were obtained. Monitoring well sampling records containing this information may be found in Appendix G. Purge water from wells was containerized in 425-gallon poly tanks and later transferred to the 4,000-gallon poly tank.

Purging and sampling was done in such a manner as to minimize agitation or aeration of the well water. A Grundfos Redi-Flow II submersible pump with dedicated teflon-lined polyethylene tubing was used for all purging and sampling. Purge rates ranged from approximately 0.1 to 2 gpm, with a sampling rate which approached the lower limit of the pump, ranging from 500 to 1000 ml/min. Low sampling rates were chosen to minimize the suspension of particulate matter which could effect the analytical results, and to more closely approximate ground water conditions. All non-dedicated sampling equipment was thoroughly decontaminated prior to each sampling event to prevent possible cross-contamination.

4.2.7 Monitoring Well Abandonment

Five existing monitoring wells were abandoned during the course of this field effort, including WTCP1, WTP1, WTM1, WTM2, and WTE2. Monitoring well WTP1 had a flush-mount completion, while the remainder of the wells abandoned had above-ground completions. None of the above-ground wells had protective posts or concrete pads that needed to be removed.

The riser for each well was cut off approximately 2 feet below ground surface. The well was plugged using a cement-bentonite grout mixture. The grout mixture used was the same as that

for monitoring well installation (see page 4-12 of Section 4.2.3 for mixture). The grout mixture was tremied down the well. Pumping continued until the grout level reached the ground surface in all the abandoned wells except WTE2. At WTE2, the grout was brought to approximately 2 feet below ground surface, then the remainder of the boring was backfilled with natural soils.

4.2.8 Surveying

A survey of all newly installed and existing monitoring wells used in this Pre-Design investigation was completed in October 1995 by USACE Omaha District. Elevations for the monitoring wells were taken on the top of the riser and on average ground. A listing of this survey data may be found in Table 4-2.

Table 4-2
Surveying Data
Pre-Design Technical Memorandum
Himco Dump Superfund Site
Elkhart, Indiana

Monitoring Well Number	Northing	Easting	Top of Riser Elevation ¹	Ground Elevation ¹
WTB1	1533596.77	405953.28	763.65	761.8
WTB2	1533597.11	405959.05	763.18	761.2
WTB3	1533597.39	405968.13	763.28	761.1
WTB4	1533595.28	405975.91	762.33	761.1
WTE1	1531566.72	407131.36	765.75	762.9
WTE3	1531548.54	407126.66	765.47	762.6
WT01	1532407.14	407876.93	762.83	762.83
WT101A	1531629.81	407616.98	764.34	762.0
WT101B	1531617.03	407621.69	764.23	761.9
WT101C	1531603.13	407627.48	764.11	761.4
WT102A	1534850.57	405943.64	769.09	766.7
WT102B	1534872.79	405939.79	768.82	766.4
WT102C	1534862.86	405941.85	769.20	766.3
WT103A	1532537.59	405538.04	762.61	758.2
WT104A	1531495.73	406017.30	765.29	763.0
WT105A	1531172.44	407102.56	762.58	760.3
WT106A	1530938.53	407760.41	761.50	759.2
WT111A	1531905.43	406358.78	766.45	764.4
WT112A	1533653.49	406824.67	765.90	763.6
WT112B	1533653.01	406834.06	766.09	763.4
WT113A	1533608.69	407789.11	771.85	769.2
WT113B	1533604.43	407779.02	772.06	769.3
WT114A	1531843.97	407997.29	769.19	766.7
WT114B	1531834.38	407995.71	769.37	766.9
WT115A	1531675.84	407261.44	765.87	763.6

Table 4-2 (Continued) Surveying Data Pre-Design Technical Memorandum Himco Dump Superfund Site Elkhart, Indiana

Monitoring Well Number	Northing	Easting	Top of Riser Elevation ¹	Ground Elevation ¹
WT116A	1531925.50	406784.96	763.86	761.7
WT116B	1531931.04	406775.79	763.89	761.9
WT117A	1532201.98	405908.93	767.19	764.8
WT117B	1532202.51	405896.41	766.60	764.4
WT118B	1531917.55	406361.16	766.49	764.1

^{1.} Feet Mean Sea Level (MSL)

5.0 SITE CHARACTERIZATION

This section presents the findings of the Pre-Design field investigation at the Himco Site. Included is a discussion on the site-specific hydrogeology, and characterization of the contaminants and their distribution. A complete discussion on the regional and site-specific geology, including stratigraphy, may be found in the Final Remedial Investigation Report (Donohue, 1992). Logs of borings completed for the Pre-Design investigation (see Appendix B) support the lithologic/stratigraphic findings of previous investigations, and additional characterization of the site soils was not deemed necessary in this document. Results of testing the contents of the 4,000-gallon poly tank may be found in Appendix H.

5.1 Geotechnical Testing of Site Soils

The goal of the geotechnical soil sampling and testing was to support the field classifications made by the USACE geologist and to confirm that the filter pack was properly sized to the formation material.

Results of the laboratory classification are summarized in Appendix C. Laboratory testing shows that materials in the screened interval of the newly installed monitoring wells range from Poorly Graded to Gravelly Sand with a USCS classification symbol of SP.

The filter pack for monitoring wells WT114B, WT117B, and WT118B is finer than the recommended range as determined using USEPA's (1975) method. It is not believed that this adversely affected the quality of the ground water samples obtained as the wells were adequately and properly developed, and extremely low turbidities were measured during purging for the ground water sampling.

5.2 Ground Water Flow

Ground water level measurements were collected within an 8-hour period from all monitoring wells at the Himco Site on September 16, 1995 except monitoring well WT104A. The water level in this well was measured seven days later due to problems in obtaining the access agreement in a timely fashion. Table 5-1 presents ground water elevation data derived from these measurements. Based upon this information, two ground water elevation maps have been generated, one for the shallow and one for the intermediate portions of the aquifer (Figures 5-1 and 5-2).

In general, ground water flow as determined during this Pre-Design field investigation is consistent with previous studies. At the time of the water level measurements, ground water occurred from approximately 3 to 16 feet below ground surface at elevations ranging from 751 to 757 feet Mean Sea Level (MSL). Ground water elevations show a relatively flat horizontal hydraulic gradient (average of 0.001 feet/feet) trending south to southeast at both levels in the aquifer (Figures 5-1 and 5-2). Ground water contours for the water table portion of the aquifer show the gradient to vary across the site. This is most likely related to changes in lithology. In

Table 5-1
Results from Site-Wide Water Level Survey
Pre-Design Technical Memorandum
Himco Dump Superfund Site
Elkhart, Indiana

Date	Well Number	TOC Elevation ¹	Depth to Water ²	Water Level Elevation ¹	Well Depth ²	Comments
9/16/95	WTB1	763.65	8.85	754.80	N/A	Well listed as 473' below the ground surface
9/16/95	WTB2	763.18	8.43	754.75	13.14	Debris came up from the bottom.
9/16/95	WTB3	763.28	8.47	754.81	123.81	
9/16/95	WTB4	762.33	7.52	754.81	173.83	PVC broken and cracked. Debris floating on top of water-looks like plants.
9/16/95	WTE1	765.75	14.11	751.64	81.14	No cap or cement pad
9/16/95	WTE3	765.47	13.80	751.67	175.34	No cap
9/16/95	WT01	762.83	11.56	751.27	29.24	
9/16/95	WT101A	764.34	12.76	751.58	18.64	
9/16/95	WT101B	764.23	12.76	751.47	101.04	No concrete pad
9/16/95	WT101C	764.11	12.44	751.67	168.14	

Table 5-1 (Continued)
Results from Site-Wide Water Level Survey
Pre-Design Technical Memorandum
Himco Dump Superfund Site
Elkhart, Indiana

Date	Well Number	TOC Elevation ¹	Depth to Water ²	Water Level Elevation ¹	Well Depth ²	Comments
9/16/95	WT102A	769.09	12.55	756.54	18.16	No concrete pad
9/16/95	WT102B	768.82	12.21	756.61	67.49	No concrete pad
9/16/95	WT102C	769.20	12.70	756.50	160.14	No concrete pad
9/16/95	WT103A	762.61	7.34	755.27	18.50	Well and posts not painted
9/23/95	WT104A	765.29	13.72	751.57	18.86	
9/16/95	WT105A	762.58	11.62	750.96	18.61	Well and posts not painted
9/16/95	WT106A	761.50	10.68	750.82	18.54	Well and posts not painted
9/16/95	WT111A	766.45	14.22	752.23	21.80	
9/16/95	WT112A	765.90	11.72	754.18	17.84	
9/16/95	WT112B	766.09	11.94	754.15	62.44	
9/16/95	, WT113A	771.85	18.73	753.12	24.69	
9/16/95	WT113B	772.06	18.93	753.13	70.14	
9/16/95	WT114A	769.19	18.01	751.18	24.74	

Table 5-1 (Continued) Results from Site-Wide Water Level Survey Pre-Design Technical Memorandum Himco Dump Superfund Site Elkhart, Indiana

Date	Well Number	TOC Elevation ¹	Depth to Water ²	Water Level Elevation ¹	Well Depth²	Comments
9/16/95	WT114B	769.37	18.05	751.32	67.74	
9/16/95	WT115A	765.87	14.35	751.52	19.89	
9/16/95	WT116A	763.86	10.82	753.04	15.06	Odor coming from well
9/16/95	WT116B	763.89	11.60	752.29	60.49	
9/16/95	WT117A	767.19	14.45	752.74	18.14	
9/16/95	WT117B	766.60	13.85	752.75	63.33	
9/16/95	WT118B	766.49	14.20	752.29	65.02	

Feet Mean Sea Level (MSL)Feet from Top of Casing (TOC)

		U.S. ARMY ENGINEER D CORPS OF ENGINEE OMAHA, NEBRASK	ERS	
= 200 FEET 200'	Designed by: R.J.G.	REM	CHART, INDIANA EDIAL ACTION	A
	Drawn by:	HIMCO DUM	P SUPERFUND	SITE
	J.A.H.	GROUND WATER	R ELEVATION CONT	DURS
	Checked by:	SHALLOW PORTION	OF WATER TABLE	AQUIFER
	R.J.G.	SEPTE	MBER 16, 1995]
COMPUTER ADED	Reviewed by:	Plot Scale Ratio: 200:1 Design File: EH01G200pg2.dgr	Date:	Sheet reference number:
Design &	Submitted by:	Spec. No.: DACA 45	Drawing Code:	
DRAFTING!	Chief: GEOLOGY A Section	Contract No.: DACA 45	X	GX.XX
		1		

	Symbol Descriptions Date App				
•					
		U.S. ARMY ENGINEER [DISTRICT		
		CORPS OF ENGINE OMAHA, NEBRASK			
. 200 5555	Designed by:	KHART, INDIANA	A		
- 200 FEET 200'	R.J.G. REMEDIAL ACTION				
	Drawn by:	HIMCO DUM	P SUPERFUNI	D SITE	
	. J.A.H.	GROUND WATE	R ELEVATION CO	NTOURS	
	Checked by:	INTERMED. PORTION	OF WATER TAB	LE AQUIFER	
	R.J.G.	SEPTE	EMBER 16, 1995		
OMPUTER	Reviewed by:	Plot Scale Ratio: 200:1	Date:	Sheet	
AIDED	X	Design File: EH01200.dgn	X	reference number:	
DESIGN &	Submitted by:	Spec. No.: DACA 45	Drawing Code:		
DRAFTING J	Chief: GEOLOGY A Section	Contract No.: DACA 45	X	GX.XX	
		1			

particular, the horizontal hydraulic gradient is considerably steeper along the southern boundary of the landfill. In the construction debris area, the log of WT116B indicates the existence of a fine-grained soil of appreciable thickness (interpreted to be approximately 4.7 feet thick) below the water table. This in part may be causing the observed changes in the horizontal hydraulic gradient.

A comparison of water levels between shallow and intermediate aquifer wells WTB2 and WTB3, WT101A and WT101B, WT102A and WT102B, WT111A and WT118B, WT112A and WT112B, WT113A and WT113B, WT114A and WT114B, WT116A and WT116B, and WT117A and WT117B shows little potential for vertical flow of ground water. Elevation head differences ranging from 0.01 to 0.75 feet were noted, with the potential for both upward and downward flow; however, the vertical gradients were noted to be predominantly upward.

5.3 Contaminant Characterization

This section describes the nature and distribution of contaminants detected at the Himco Site. The analytical results of the 1995 ground water monitoring event are summarized first, then a comparative analysis of the 1990-1992 and 1995 ground water monitoring results is provided.

Twenty-four ground water samples were collected at the Himco Site between the dates of September 18 through September 27, 1995. These water samples were analyzed by the Contract Laboratory Program Scope of Work (CLP SOW) methodology for the Full Target Compound List (FTCL). The organic samples were subcontracted to Ross Analytical Services, Inc., 16433 Foltz Industrial Parkway, Strongsville, Ohio, 44136. The inorganic samples were analyzed by American Analytical and Technical Services, 11950 Industriplex Blvd., Baton Rouge, Louisiana, 70809. Table 5-2 summarizes the analytical methods used, and a table correlating the USEPA sample numbers to a particular monitoring well or to a specific purpose (i.e. field quality control) is presented in Table 5-3.

TABLE 5-2 ANALYTICAL METHODS							
Compound Class	Number of Samples	Matrix	Preparation/ Extraction Method (1)	Analytical Method (1)	Laboratory (2) (3)		
Volatile Organics	24	Water	CLP SOW	CLP SOW	Ross		
Base/Neutral/ Acids	24	Water	CLP SOW	CLP SOW	Ross		
PCB/Pesticide	24	Water	CLP SOW	CLP SOW	Ross		
Metals/Cyanide	20	Water	CLP SOW	CLP SOW	American		

- 1 Contract Laboratory Program Scope of Work
- 2 Ross Analytical Services, Inc.
- 3 American Analytical and Technical Services

Table 5-3	USEPA Sample Number to Monitoring Well Correlation Table
USEPA Sample Number	Monitoring Well
EARR6	WTE1
MEAFJ2	WTE1
EARQ6	WTO1
MEAFH2	WTO1
EARR3	WT101A
MEAFH9	WT101A
EARR3 MS/MSD	WT101A MS/MSD
EARR4	WT101B
MEAFJ0	WT101B
EARR5-DUP	WT101B DUPLICATE
MEAFJ1-DUP	WT101B DUPLICATE
EARP8	WT102A
MEAFG6	WT102A
EARP6	WT102B
MEAFG5	WT102B
EARQ7	WT111A
MEAFH3	WT111A
EARP4	WT112A
EARP4 -MS/MSD	WT112A MS/MSD
MEAFG3	WT112A
EARP5	WT112B
MEAFG4	WT112B
EARP1	WT113A
MEAFG1	WT113A
EARP2	WT113B
MEAFG2	WT113B
EARQ4	WT114A

Table 5-3	USEPA Sample Number to Monitoring Well Correlation Table
USEPA Sample Number	Monitoring Well
MEAFH1	WT114A
EARQ2	WT114B
MEAFG9	WT114B
EARQ9	WT115A
MEAFH5	WT115A
EARQ1	WT116A
MEAFG8	WT116A
EARQ0-DUP	WT116A DUPLICATE
MEAFG7-DUP	WT116A DUPLICATE
EARQ3	WT116B
MEAFH0	WT116B
EARR0	WT117A
MEAFH6	WT117A
EARR1	WT117B
MEAFH7	WT117B
EARR2	WT118B
MEAFH8	WT118B
EARQ5	TRIP-BLANK
EARR8	TRIP-BLANK
EARP0	TRIP-BLANK
EARP3	TRIP-BLANK
EARR9	TRIP-BLANK
EARP7	TRIP-BLANK
EARP9	TRIP-BLANK
EARS1	TRIP-BLANK
MEAFJ4	SOURCE-WATER
EARS0	SOURCE-WATER

Table 5-3	USEPA Sample Number to Monitoring Well Correlation Table		
USEPA Sample Number	Monitoring Well		
EARR7	RINSATE		
MEAFJ3	RINSATE		
EARQ8	RINSATE		
MEAFH4	RINSATE		

Note: Sample Numbers should be used when referring to Appendix H (Analytical Data Packages).

DUP: Duplicate sample

MS/MSD: matrix spike/matirx spike duplicate

5.3.1 Analytical Results - 1995 Ground Water Sampling Round

Nineteen new and existing monitoring wells had ground water samples collected from them which were analyzed for the following categories of compounds: VOC, SVOC, Metals/Cyanide and PCB/Pesticide by CLP SOW, and the results of these analyses are summarized in Table 5-4 and Figure 5-3. Several water samples had quantifiable or "J" estimated quantities of the following Methylene Chloride, Acetone, Chloroform, Bis(2-Ethylhexyl)phthalate, compounds: Diethylphthalate, and Di-n-butylphthalate. Methylene Chloride, Acetone, and Chloroform are common laboratory contaminants according to Appendix VII of the USEPA Guidance for Data Usability in Risk Assessment, and these compounds are frequently detected in VOCs. The trip blanks associated with sampling events between the dates of September 25 through September 27, 1995 were contaminated with Methylene Chloride and low levels of Acetone. The trip blanks associated with sampling events between the dates of September 18 through September 25, 1995 were contaminated with Methylene Chloride and low levels of Chloroform. The phthalates (Bis(2-Ethylhexyl)phthalate, Diethylphthalate, and Di-n-butylphthalate) according to Appendix VII of the USEPA Guidance for Data Usability in Risk Assessment are also commonly known to be laboratory contaminants detected in SVOC analysis, and these phthalates were detected in the SVOCs method blanks. Finding Methylene Chloride, Acetone, Chloroform, Bis(2-Ethylhexyl)phthalate, Diethylphthalate, and Di-n-butylphthalate in both the Quality Control Samples (the Method-Blanks or the Trip-Blanks) and the environmental samples near the same low-levels suggests that laboratory contamination was the cause of the Methylene Chloride, Acetone, Chloroform, Bis(2-Ethylhexyl)phthalate, Diethylphthalate, and Di-n-butylphthalate detections in the environmental samples. As most of these detections did not exceed the criteria of Appendix VII of the USEPA Guidance for Data Usability in Risk Assessment, they were "U" qualified and not considered further. Other compounds not considered common laboratory contaminants by Appendix VII of the USEPA Guidance for Data Usability in Risk Assessment were found in the trip blanks and the rinsate blanks. Several compounds were found in the rinsate blanks: Methylene chloride, Acetone, Chloroform, Bromodichloromethane, and 1,2 -The environmental samples from monitoring well WT116A and the source-Dichloropropane. water also yielded detections for Bromodichloromethane at a level near that found in the rinsate

blank; therefore, these results are "U" qualified. Monitoring well WT116A also yielded 1,2 -Dichloropropane at similar levels as those found in the rinsate blanks, so these results are "U" qualified as well. One trip blank (EARR9) yielded a detection of 4-Methyl-2-pentanone. None of the environmental samples yielded a similar analyte; therefore, no environmental sample data qualification was necessary. SVOC samples from monitoring wells WTO1 and WT101A yielded quantifiable levels of phthalate compounds, which are commonly attributed to laboratory contamination, and these results were not qualified by the Laboratory or the USEPA data validation as exceeding the criteria of Appendix VII of the USEPA Guidance for Data Usability in Risk Assessment. Phthalates are commonly detected in SVOC analyses, because phthalates are used as plasticizers in the many types of plastic laboratory equipment that SVOC samples may contact during SVOC sample collection, extraction, preparation, and analysis. These same types of phthalate plasticizers and plastics used in laboratories are also utilized in other common commercial consumer products, and as the Himco Dump site is a landfill, such phthalate containing plastics may have been disposed of here. This means that plastics in the landfill may potentially provide a non-laboratory source of the phthalates detected in the SVOC analyses. Further monitoring of the groundwater is necessary to conclusively determine the true source (site contamination or laboratory contamination) of the phthalates detected. Nonetheless, as the site history suggests that a source of phthalates was disposed of at the Himco Superfund Dump Site, all of the non-qualified phthalate results are presented in Figures 5-3 and 5-4 and in Tables 5-4 and 5-5, and these phthalate findings will be discussed. Several ground water samples analyzed for metals and cyanide were "B" ("J" estimated) qualified because the preparation blanks, rinsate blanks, and continuing laboratory blanks were contaminated with a variety of metals, including: Aluminum, Barium, Magnesium, Manganese, Potassium, Vanadium, Zinc, Beryllium, Calcium, Chromium, Copper, Iron, Lead, Nickel, and Silver. The levels of these metal contaminants typically were at a parts per billion level and were below the maximum contaminant levels (MCLs). The source-water used for all drilling and decontamination purposes was analyzed for metals/cyanide, SVOCs, VOCs, and Pesticides/PCBs. The metals analysis yielded Barium (27.2 B μg/L) and Manganese (5.9 B μg/L), and the results of the other analyses produced non-detect results.

VOC analysis results were below quantitation limits for every sample except for the sample and field duplicate sample collected from monitoring well WT116A, for which the VOC analytical results yielded quantifiable levels of benzene (15 µg/L and 14 µg/L, respectively). Additionally other compounds were detected in this sample and field duplicate taken from monitoring well WT116A at levels below the quantitation limit, and they were "J" (estimated concentration) qualified. These compounds were TCE (0.8 J, 0.9 J), 1,2 Dichloroethene (total) (1 J, 1 J), 1,1 Dichloroethane (7 J, 7 J), and Chlorobenzene (0.7 J, 10 U). Other VOC samples yielded "J" (estimated quantitation) results showing that Benzene, 1,2 Dichloroethene (total), 1,1 Dichloroethane, and Chloroethane are present but at concentrations less than the quantitation limit (see Table 5-4 and Table 5-5).

Table 5-4 1995 Analytical Data Summary for Ground Water Samples Himco Dump Superfund Site							
Monitoring Well Number	WT116A- DUP	WT116A	WT114B	WT114A	WT115A		
Pesticides/PCB (μg/L)	ND	ND	ND	ND	ND		
Semi-Volatile Organic Compounds (µg/L)			ND	ND			
Dibenzofuran	2 J	2 J	10 U		10 U		
Fluorene	3 J	3 J	10 U		10 U		
Anthracene	10 U	0.3 J	10 U		10 U		
Carbazole	6 J	6 J	10 U		10 U		
Naphthalene	10 U	0.4 J	10 U		10 U		
Acenaphthene	3 J	3 J	10 U		10 U		
Phenanthrene	0.2 J	0.3 J	10 U		10 U		
2-Methylnaphthalene	0.5 J	10 U	10 U		10 U		
Butylbenzylphthalate	10 U	10 U	0.2 J		10 U		
bis (2- Ethylhexyl)phthalate	10 U	10 U	10 U		0.4 J		
VOCs (μg/L)							
1,1 Dichloroethane	7 J	7 J	1 J	5 J	10 U		
Methylene Chloride	10 U	10 U	10 U	10 U	1 U		
Chloroform	10 U	10 U	10 U	10 U	10 U		
1,2 Dichloroethene (Total)	1 J	1 J	1 J	10 U	10 U		
TCE	0.8 J	0.9 Ј	10 U	10 U	10 U		
Chlorobenzene	0.7 J	10 U	10 U	10 U	10 U		
Carbon Disulfide	10 U	10 U	2 J	0.7 J	10 U		
Benzene	14	15	10 U	2 J	1 J		

Table 5-4 1995 Analytical Data Summary for Ground Water Samples Himco Dump Superfund Site							
Monitoring Well Number	WT116A- DUP	WT116A	WT114B	WT114A	WT115A		
VOC - TICS							
Chlorofluoromethane	7 NJ	7 NJ	6 NJ	U	U		
Ether	38 NJ	38 NJ	15 NJ	12 NJ	58 NJ		
Dichlorofluoromethane	11 NJ	11 NJ	7 NJ	5 NJ	81 NJ		
Monitoring Well Number	Source Water	Rinsate Blank	WT101B-DUP	WT101B	WT101A		
Pesticides/PCB (µg/L)	ND	ND	ND	ND	ND		
Semi-Volatile Organic Compounds (μg/L)	ND	ND	ND	ND			
Di-ethylphthalate					11		
VOCs (μg/L)							
1,1 Dichloroethane	10 U	10 U	10 U	10 U	5 J		
Methylene Chloride	9 U	2 U	2 U	1 U	0.7 U		
Chloroform	6 U	47 U	10 U	10 U	10 U		
1,2 Dichloroethene (Total)	10 U	10 U	10 U	10 U	10 U		
Chloroethane	10 U	10 U	7 Ј	6 J	10 U		
TCE	10 U	10 U	10 U	10 U	10 U		
Chlorobenzene	10 U	10 U	10 U	10 U	10 U		
Bromodichloromethane	4 U	7 U	10 U	10 U	10 U		
Carbon Disulfide	10 U	10 U	10 U	10 U	10 U		
Benzene	10 U	10 U	10 U	10 U	10 U		
Chlorofluoromethane	U	U	5 NJ	U .	U		
Dichlorofluoromethane	U	U	U	20 NJ	U		
Ether	U	U	15 NJ	30 NJ	U		

Table 5-4 1995 Analytical Data Summary for Ground Water Samples Himco Dump Superfund Site							
Monitoring Well Number	WT117B	Rinsate Blank	WTO1				
Pesticides/PCB (μg/L)	ND	ND	ND				
Semi-Volatile Organic Compounds (μg/L)	ND	ND					
Bis(2-Ethylhexyl)phthalate			13				
VOCs (µg/L)							
1,1 Dichloroethane	10 U	10 U	10 U				
Methylene Chloride	1 U	2 U	8 U				
Acetone	10 U	7 U	10 U				
Chloroform	10 U	16 U	10 U .				
1,2 Dichloroethene (Total)	10 U	10 U	10 U				
Chloroethane	10 U	10 U	10 U				
TCE	10 U	10 U	10 U				
Chlorobenzene	10 U	10 U	10 U				
Bromodichloromethane	10 U	2 U	10 U				
Dichloropropane	10 U	1 U	10 U				
Carbon Disulfide	10 U	10 U	10 U				
Benzene	10 U	10 U	10 U				
VOC - TICS							
Dichlorofluoromethane	U	Ū	U				
Ether	U	U	U				

Footnotes for the VOC, SVOC, and Pest/PCB data.

ND: Lists of analytes were Non-detects, U: Analyte was non-detect, J: Estimated value

Table 5-4 Metals (μg/L)	1995 Analytical Data Summary for Ground Water Samples Himco Dump Superfund Site							
Monitoring Well Number	WT114A	WTO1	WT111A	WT117A Rinsate	WT113A	WT113B	WT112A	
Chromium	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	5.6 B X	4.0 U	
Cyanide	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	
Arsenic	23.3	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	
Lead	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	
Manganese	393	205	201	1.2 B X	2.3 B X	148	4.0 B X	
Antimony	12.8 U	12.8 U	12.8 U	12.8 U	12.8 U	12.8 U	12.8 U	
Mercury	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20	0.20 U	
Thallium	6.7 B X	4.7 U	4.7 U	4.7 U	4.7 U	5.0 B X	4.7 U	
Monitoring Well Number	WT112B	WT102B	WT102A	WT116A Duplicate	WT116A	WT114B	WT116B	
Chromium	4.0 U	4.0 U	23.9 X	4.0 U	7.1 B X	4.0 U	4.0 U	
Cyanide	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	11.4	10.0 U	
Arsenic	3.8 U	4.8 B	3.8 U	3.8 U	3.8 U	18.5	3.8 U	
Lead	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	
Manganese	119	87.3	30.2	696	670	182	203	
Antimony	12.8 U	29.7	21.7 B	20.4 B	12.8 U	12.8 U	12.8 U	
		- 1				1		

0.20 U

4.7 U

0.20 U

4.7 U

Mercury

Thallium

0.20 U

13.2 B X

0.20 U

5.5 B X

0.20 U

4.7 U

0.20 U

4.7 U

0.20 U

4.7 U

Table 5-4 Metals (μg/L)	• • • • • • • • • • • • • • • • • • •								
Monitoring Well Number	WT117A	WT117B	WTE1	Source Water	WT112A				
Chromium	44.2 B	4.0 U	4.0 U	4.0 U	4.0 U				
Cyanide	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U				
Arsenic	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U				
Lead	3.4	1.7 U	1.7 U	1.7 U	1.7 U				
Manganese	230	61.2	156	5.9 B	4.0 B X				
Antimony	2.9 B X	1.9 U	1.9 U	1.9 U	12.8 U				
Mercury	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U				
Thallium	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U				

Footnotes for Metals/Cyanide data.

B: Considered "J" Estimated due to contamination in Preparation or Continuing Calibration Blanks.

X: Sample result is greater than the IDL but less than 5 times the amount found in any blank. These data should be considered as

[&]quot;U" qualified (National Functional Guidelines 1994).

SVOC analysis results were below quantitation limits for every sample, except for SVOC samples from monitoring wells WTE1 and WT101A, which showed Bis(2-Ethylhexyl)phthalate at a level of 13 μg/L and Di-ethylphthalate at a level of 11 μg/L, respectively. Monitoring well WT114B yielded a "J" qualified phthalate result of Butylbenzylphthalate 0.2 J μg/L. Most likely these compounds are present in the samples due to laboratory contamination, however, as discussed above there is a possibility they indicate actual site contamination. Further groundwater monitoring is necessary to determine if these phthalate detections are attributable to laboratory contamination or site conditions. Monitoring well WT116A yielded the only non-phthalate SVOC results. The following compounds were detected below the quantitation limit: Dibenzofuran (2 J, 2 J), Fluorene (3 J, 3 J), Anthracene (10 U, 0.3 J), Naphthalene (10 U, 0.4 J), Acenaphthene (3 J, 3 J), Carbazole (6 J, 6 J), Phenanthrene (0.2 J, 0.3 J), and 2-Methylnaphthalene (0.5 J, 10 U), in a sample and field duplicate respectively, collected from monitoring well WT116A.

The pesticide/PCB analyses yielded non-detects results for all samples.

The inorganic analyses for Metals and Cyanide yielded four monitoring wells with Antimony results above the Antimony MCL (6 µg/L) and seven monitoring wells water with Manganese results above the Manganese Secondary MCL (50 µg/L). Antimony was detected in samples obtained from monitoring wells WT102B, WT102A, WT116A, WT116A (field duplicate), WT101B and WT101B (field duplicate) at levels of 29.7 μg/L, 21.7 B μg/L, 12.8 U μg/L, 20.4 B μg/L, 12.8 U μg/L, and 45.5 B μg/L respectively. Manganese was detected in samples obtained from monitoring wells WT114A, WT116A, WT116A (field duplicate), WT115A, WT101A, WT117A, WT117B, WTE1, and in the source water at levels of 393 μg/L, 670 μg/L, 696 μg/L, 413 μg/L, 1060 μg/L, 230 μg/L, 61.2 μg/L, 156 μg/L, and 5.9 B μg/L respectively. Arsenic was detected in samples obtained from monitoring wells WT114A, WT114B, WT102B, and WT101A at levels of 23.3 µg/L, 18.5 µg/L, 4.8 B µg/L, and 7.8 B µg/L respectively. Lead was found a sample taken from monitoring well WT117A at a level of 3.4 μg/L. Chromium was seen in a sample obtained from monitoring well WT117A at a level of 44.2 B µg/L. Cyanide was detected in samples obtained from monitoring well WT114B at a concentration of 11.4 μg/L. The results of the common ground water metals (i.e. Sodium, Calcium, etc.) will not be summarized here. The samples and field duplicates obtained from monitoring wells WT116A and WT101B had some disparities in the Antimony levels reported. The sample and field duplicate from monitoring well WT116A yielded Antimony results of 12.8 U µg/L and 20.4 B ug/L respectively, and the sample and field duplicate results from monitoring well WT101B yielded Antimony levels of 12.8 U μg/L and 45.5 B μg/L respectively. Groundwater turbidity probably does not provide an explanation for the sample and field duplicate disparities, because the turbidity of the groundwater at monitoring wells WT116A and WT101B was 6.3 NTU and <1 NTU respectively.

5.3.2 Comparative Analysis of Ground Water Analytical Results

Presented in Table 5-5 are the levels of contaminants detected as a function of time from the various monitoring wells surrounding the Himco Site. To further aid in the conceptual understanding of the site conditions, the sample results are presented on Figure 5-3 for the 1995 sampling round and in Figure 5-4 for the 1990-1992 sampling round. The ground water

analytical results from the 1990-1992 Remedial Investigation are compared with the September 1995 ground water sampling results in order to quantify any changes in ground water quality related to the Himco Site. For the purposes of this comparison, dissolved metals results from the RI investigation (Volume 4 of the Final RI Report, Donohue, 1992) were compared against data from the 1995 sampling round. Similarly, all other analyses (VOCs, SVOCs, and Pesticides/PCBs) reported in Volume 4 of the Final RI Report were used for comparison against the most current data. As shown in Table 5-4, some compounds that are commonly considered laboratory contaminants (Di-n-octylphthalate, bis(2-Ethylhexyl)phthalate, Methylene Chloride, Acetone, Chloroform) were detected in the 1990-1992 Remedial Investigation's ground water Low-level detections of these compounds were "J" qualified (estimated sampling. concentration), and they are reported along with the other analytical results. However, these compounds may not typify the actual site contaminants, and the detection of similar compounds in the analytical results of the September 1995 data were attributable laboratory contamination and were "U" qualified. Phthalates are commonly detected in SVOC analyses, because phthalates are used as plasticizers in the many types of plastic laboratory equipment that SVOC samples may contact during SVOC sample collection, extraction, preparation, and analysis. These same types of phthalate plasticizers and plastics used in laboratories are also utilized in other common commercial consumer products, and as the Himco Dump site is a landfill, such phthalate containing plastics may have been disposed of here. This means that plastics in the landfill may potentially provide a non-laboratory source of the phthalates detected in the SVOC analyses. Further monitoring of the groundwater is necessary to conclusively determine the true source (site contamination or laboratory contamination) of the phthalates detected. Nonetheless, as the site history suggests that a source of phthalates was disposed of at the Himco Superfund Dump Site, all of the non-qualified phthalate results are presented in Figures 5-3 and 5-4 and in Tables 5-4 and 5-5, and these phthalate findings will be discussed.

Metals: In the 1990-1992 sampling event, upgradient monitoring wells WTB1, WTB2, WTB3, WTB4, WTCP1, WT102A, WT102B, and WT102C and downgradient monitoring wells WTE2, WTE3, WTM1, WTM2, WTN1, WTO1, WTP1, WT101A, WT101B, WT101C, WT103A, WT104A, WT105A, WT106A, and WT111A yielded results for metals. Of this set of wells, WTB1, WTB2, WTB3, WTB4, WTCP1, WTE2, WTE3, WTM1, WTM2, WTN1, WTP1, WT101C, WT102C, WT103A, WT104A, WT105A, and WT106A were not resampled in 1995. During the 1995 sampling event upgradient monitoring wells WT102A, WT102B WT112B, and WT113B and down gradient monitoring wells WTE1, WTO1, WT101A, WT101B, WT111A, WT114A, WT114B, WT115A, WT116A, WT116B, WT117A, WT117B, and WT118B yielded results for metals.

The upgradient water quality during the 1990-1992 sampling event was determined by the analytical results from monitoring wells WTB1, WTB2, WTB3, WTB4, WTCP1, WT102A, WT102B, and WT102C; several of these monitoring wells were sampled twice or more during 1990-1992. Monitoring wells, WTB1, WTB2, WTB3, WTB4, from the WTB well cluster displayed the following results during the first round of sampling: Manganese (36.1 μ g/L), Manganese (2.1 B μ g/L) and Selenium (2.3 BJ μ g/L), Antimony (63.4 μ g/L) and Manganese (439 J μ g/L), and Antimony (35.2 B μ g/L) and Manganese (144 J μ g/L), respectively. The second round of 1990-1992 groundwater sampling yielded for monitoring wells WTB2, WTB3,

and WTB4 Manganese (8.9 BJ µg/L), Manganese (359 µg/L), and Antimony (13.7 B µg/L), Manganese (136 μg/L), and Lead (1.90 B μg/L), respectively. Monitoring well WTB3 was sampled twice during the 1990-1992 time period. One of the two sets of analyses resulted in the detection of Antimony (63.4 µg/L), while the other results were non-detect. These differences may suggest that the elevated levels of Antimony were a sampling artifact possibly related to turbidity. For the monitoring wells WTB2, WTB3, and WTB4 sampled twice during the 1990-1992 sampling event Antimony and Manganese are consistently found in the upgradient groundwater at significant levels above the MCL for Antimony (6 µg/L) and the secondary MCL for Manganese (50 μg/L). Monitoring well WTCP1 was only sampled once during the 1990-1992 sampling event, and this monitoring well yielded results of Manganese (8.5 B µg/L), Selenium (2.1 B μg/L), and Mercury (0.20 J μg/L). Upgradient monitoring wells WTB1, WTB2, WTB3, WTB4, and WTCP1 were not sampled during the 1995 sampling event. upgradinet monitoring well cluster WT102 was sampled during the 1990-1992 groundwater sampling event and during the 1995 groundwater sampling event. Monitoring well WT102A was sampled three times during the 1990-1992 sampling event with the following findings: Manganese (5.20 BJ μg/L) and Arsenic (1.10 BJ μg/L), Manganese 3.7 BJ μg/L), and Manganese (8.10 μg/L). Monitoring well WT102B was sampled once, and Manganese (115 μg/L) was found at a level greater than the secondary MCL of Manganese (50 μg/L). Monitoring well WT102C was sampled once during the 1990-1992 sampling event, and the results were non-detects. In 1990-1992 the upgradient groundwater quality was impacted by Manganese at levels above secondary MCLs as determined by the results of monitoring wells WTB3 (439 J μg/L), WTB4 (144 J μg/L and 136 µg/L), and WT102B (115 µg/L) and by Antimony above MCLs as determined by the results of monitoring wells WTB3 (63.4 µg/L) and WTB4 (35.2 B µg/L and 13.7 B µg/L). Further, Lead, Mercury, Arsenic, and Selenium were also detected at concentrations below MCLs or action levels. For those monitoring wells that were sampled more than once during the 1990-1992 sampling event, these low-level metal detections were not found in the groundwater again, which suggests that these may be anomalous results due possibly to sampling artifacts. Results of the 1995 sampling event, which include the existing monitoring wells WT102A and WT102B and newly the installed monitoring wells WT112A, WT112B, WT113A, and WT113B, yielded the following results Manganese (30.2 µg/L) and Antimony (21.7 B µg/L), Antimony (29.7 μg/L) and Non-detect, Manganese (119 μg/L), and Manganese (148 μg/L), respectively. A comparison of monitoring wells WT102A and WT102B sampled both in 1990-1992 and the 1995 sampling events shows that Manganese (30.2 μg/L and 87.3 μg/L, respectively) continues to be found in the upgradient groundwater at levels exceeding the secondary MCL for Manganese (50 μg/L). Additionally, for monitoring wells WT102A and WT102B the 1995 sampling round vielded results of Antimony (21.7 B µg/L and 29.7 µg/L, respectively) above the MCL for Antimony (6 µg/L). Antimony was previously not found in monitoring wells WT102A and WT102B during the 1990-1992 sampling event, but Antimony was detected in the groundwater during the 1990-1992 sampling event in the WTB monitoring well cluster. The 1995 sampling results from the four upgradient monitoring wells, WT112A, WT112B, WT113A, and WT113B, newly installed to the east of monitoring well cluster WTB demonstrate that Manganese (119 μg/L and 148 μg/L) also impacts the upgradient groundwater along the entire norther edge (upgradient) of the Himco Dump site. As evident by the detection of Manganese and Antimony during the 1990-1992 groundwater sampling and the continued detection of Manganese and Antimony during the 1995 groundwater sampling, the ground water quality upgradient of the Himco Site has not changed since the RI sampling event with regards to metals.

The downgradient water quality during the 1990-1992 sampling event was determined by the analytical results from monitoring wells WTE2, WTE3, WTM1, WTM2, WTN1, WTO1, WTP1, WT101A, WT101B, WT101C, WT103A, WT104A, WT105A, WT106A, and WT111A; several of these monitoring wells were sampled twice or more during 1990-1992. Monitoring well cluster WTE's monitoring wells WTE2 and WTE3 displayed the following results Copper (7.6 B μg/L), Lead (2.1 BJ μg/L), Selenium (2.1 B μg/L), and Manganese (9.1 BJ μg/L), Antimony (54.0 B μg/L), Arsenic (5.3 B μg/L), and Manganese (18.2 J μg/L), respectively. Monitoring well WTE2 was resampled during the 1990-1992 sampling event and only Lead (1.2 B ug/L) was detected. This suggests that the low-level Copper, Manganese, and Selenium detections from the first round of 1990-1992 sampling may be due to sampling artifacts. The levels of Antimony found in the WTB well cluster groundwater samples exceed the Antimony MCL (6 µg/L), and some groundwater samples exceeded the secondary MCL for Manganese (50 µg/L). monitoring well cluster WTM was sampled twice during the 1990-1992 sampling event and the first sampling round produced for monitoring well WTM1 and WTM2 Antimony (46.5 B µg/L). Selenium (3.0 B μg/L), and Manganese (77.6 J μg/L) and Manganese (408 μg/L), respectively. The second round of sampling at monitoring well cluster WTM showed results of Lead (2.0 BJ μg/L) and Manganese 103.0 μg/L) for monitoring well WTM1 and results of Manganese (331 μg/L) for monitoring well WTM2. For monitoring wells WTM1 and WTM2 Manganese was detected in both 1990-1992 sampling rounds, for WTM1 Antimony was detected during the first sampling but not in the second groundwater sampling. This suggests that sample artifacts may account for the difference in Antimony results. The groundwater levels of Antimony and Manganese exceeded the Antimony MCL (6 μg/L) and the secondary Manganese MCL (50 μg/L) for some groundwater samples. Monitoring wells WT104A and WT106A were sampled twice during the 1990-1992 sampling event as well. During the first round of the 1990-1992 event at monitoring wells WT106A and WT104A Lead (230 BJ μg/L), Manganese (242 μg/L), Arsenic (5.40 BJ μg/L), and Selenium (3.90 BJ μg/L) and Lead (2.3 BJ μg/L) and Manganese (6.80 BJ μg/L) were detected respectively. The second round of 1990-1992 groundwater sampling at monitoring wells WT104A and WT106A yielded Manganese (5.4 B µg/L) and Beryllium (13.2 J μg/L), Cadmium (7.0 μg/L), Cobalt (17.0 B μg/L), Copper (16.6 BJ μg/L), Lead (1.4 BJ μg/L), Manganese (244 µg/L), and Chromium (8.6 BJ µg/L). The levels of Manganese detected during both 1990-1992 groundwater sampling for monitoring well WT106A exceeded the secondary MCL for Manganese (50 µg/L). Additionally both monitoring wells WT104A and WT106A had low-level detections of metals during the 1990-1992 sampling event, which were not replicated during a second sampling. The most probable cause for these disparities in reported levels is sampling artifacts. Monitoring well WT105A was sampled three times during the 1990-1992 sampling event and yielded Copper (3.70 B µg/L), Lead (2.40 BJ µg/L), and Manganese (68.20 μg/L) in excess of the secondary MCL for Manganese (50 μg/L) during the first sampling round, Chromium (4.3 B µg/L), Copper (4.90 BJ µg/L), Lead (1.5 BJ µg/L), and Manganese (21.6 µg/L)) during the second sampling round, and only yielded Manganese (5.40 B µg/L) during the third sampling round. Monitoring well WTP1 was sampled twice during the 1990-1992 sampling event on 23 September 1991 and on 26 September 1991, and the results of the groundwater sampling produced results of Arsenic (15.60 µg/L) and Manganese (372.0 µg/L) and Manganese (14.80 B µg/L), respectively. Monitoring wells WTN1 and WT103A were sampled once during the 1990-1992 sampling event. Monitoring well WTN1 displayed the following results, Manganese (129.00 μg/L), Arsenic (1.90 BJ μg/L), and Lead (3.00 BJ μg/L).. Monitoring well WT103A had results of Arsenic (2.30 µg/L) and Manganese (102 µg/L) in excess of the

secondary MCL for Manganese (50 μg/L), Lead (1.40 BJ μg/L), and Copper (8.90 B μg/L). Monitoring well cluster WT101 produced Arsenic (10.80 µg/L), Lead 1.70 BJ µg/L), and Manganese (2070 μg/L) results at monitoring well WT101A, Arsenic (4.20 B μg/L) and Manganese (76.70 μg/L) results at monitoring well WT101B, and Chromium (206 μg/L), Arsenic (8.10 BJ μg/L), and Manganese (28.80 μg/L) results at monitoring well WT101C. Monitoring wells WT101A and WT101B had Manganese results exceeding the secondary MCL for Manganese (50 µg/L), and monitoring well WT101C showed that Chromium (206 µg/L) was in excess of the Chromium MCL (100 µg/L). The state of the downgradient groundwater during the 1990-1992 time period was impacted by levels of Manganese above the secondary MCL for Manganese and was impacted by levels of Antimony above the Antimony MCL. Low-levels of Selenium, Lead, Arsenic, Beryllium, Cadmium, Cobalt, Copper, and Chromium were also found in some of the 1990-1992 groundwater samples. These low-level metal detections are presented in Table 5-5 and are also presented on Figure 5-4. Results of the 1995 sampling event, which includes the sampling of some of the existing monitoring wells WT101A, WT101B, WTE1, WT111A and WTO1 and the sampling of the newly installed monitoring wells WT112A, WT112B, WT113A, WT113B, WT114B, WT115A, WT116B, WT117A, WT118B, and WTE1 yielded Manganese, Lead, Chromium, Antimony, Arsenic, and Cyanide. Monitoring wells WT101A, WT101B, WT111A, and WTO1 which were sampled during the 1990-1992 sampling event were resampled during the 1995 sampling event. Groundwater samples obtained from monitoring wells WT101A and WT101B during the 1995 sampling event yielded Arsenic (7.8 B μg/L) and Manganese (1060 μg/L) in excess of the secondary MCL for Manganese (50 μg/L), and Chromium (20.6 µg/L) and Manganese (49.3 µg/L), respectively. As reported above, monitoring well WT101A yielded Manganese (2070 µg/L) and Arsenic (10.80 µg/L) during the 1990-1992 sampling; therefore, Manganese is still impacting the downgradient groundwater at levels exceeding the secondary MCL of magnesium (50 µg/L) and Arsenic is still impacting the downgradient groundwater as well. Monitoring well WT101B during the 1990-1992 sampling event yielded Arsenic (4.20 B µg/L) and Manganese (76.70 µg/L) and in the 1995 sampling event Manganese (49.3 µg/L) was detected, so Manganese is still impacting the downgradient groundwater quality. Monitoring well WTO1 produced levels of Manganese (113 µg/L) and Antimony (38.6 B µg/L) during the 1990-1992 sampling event and yielded only a detection of Manganese (205 µg/L) during the 1995 sampling event. At monitoring well WTO1, the downgradient water quality is still being impacted by Manganese at levels exceeding the secondary MCL of Manganese (50 µg/L). Monitoring well WT111A had results for Arsenic (3.10 BJ μg/L), Chromium (2.90 B μg/L), Manganese (756 μg/L), and Nickel (13.00 μg/L) during the 1990-1992 sampling event, and during the 1995 sampling event Manganese (201 μg/L) was detected. From the results of monitoring well WT111A Manganese is still affecting the downgradient water quality at levels above the secondary MCL of Manganese (50 µg/L). Manganese was the only metal of concern found in monitoring wells WTE1 (156 µg/L), WT117B (61.2 μg/L), WT115A (413 μg/L), and WT116B (203 μg/L) during the 1995 sampling event; all of these Manganese detections are above the secondary MCL for Manganese (50 µg/L). newly installed monitoring wells WT116A, WT117A, WT118B were sampled during the 1995 sampling event, and yielded Manganese (696 µg/L) at a level exceeding the secondary MCL for Manganese (50 μg/L) and Antimony (20.4 B μg/L) at levels exceeding the Antimony MCL (6 μg/L) for monitoring well WT116A, Chromium (44.2 B μg/L), Lead (3.4 μg/L) and Manganese (230 µg/L) at a level exceeding the secondary MCL for Manganese (50 µg/L) for monitoring

well WT117A, and Chromium (14.4 μg/L) and Manganese (76.9 μg/L) at a level exceeding the secondary MCL for Manganese for monitoring well WT118B. The newly installed monitoring well cluster WT114 has two monitoring wells, which yielded Arsenic (23.3 µg/L) and Manganese (393 μg/L) for monitoring well WT114A and Cyanide (11.4 μg/L), Arsenic (18.5 μg/L), and Manganese (182 µg/L) for monitoring well WT114B. The data for the newly installed well cluster WT114 and monitoring well WT118B is insufficient for assessing changes in water quality that may be related to the Himco Site as these are new data points. In the case of these new monitoring wells, the detection of elevated metals in the ground water that is attributable to the Himco Site warrants further monitoring at these locations. It should be noted that the turbidity of the purge water for monitoring well WT118B surged above 200 NTUs approximately 15 minutes prior to sampling, and that the elevated metals detected from this well may be a sampling artifact. Cyanide was the only newly discovered inorganic, and it was found only during the most current sampling round in 1995. The occurrence of Cyanide is associated with a new monitoring well location (WT114B). Ground water quality downgradient of the Himco Site does not appear to have changed significantly since the RI sampling event with regards to metals. As in 1990-1992, downgradient groundwater levels of Antimony, Arsenic, and Manganese and low lead levels were still being detected in 1995; therefore, the downgradient groundwater quality of the Himco Site does not appear to have changed significantly, since the 1990-1992 RI sampling with respect to metals.

VOCs: In the 1990-1992 sampling event, monitoring wells WTB1, WTB3, WTB4, WTCP1, WTE2, WTE3, WTM1, WTP1, WT101A, WT101B, WT106A, and WT111A yielded VOC results. Of this set of wells, WTB1, WTB3, WTB4, WTCP1, WTE2, WTE3, WTM1, WTP1, and WT106A were not resampled during the 1995 sampling round.

For the purposes of this discussion, VOC compounds that are commonly considered laboratory contaminants and that were "J" (estimated concentration) qualified will not be used in this comparative analysis. These compounds include Acetone, Chloroform, Methylene Chloride, and Hexanone. Samples taken from upgradient monitoring wells WTB1, WTB3, WTB4, and WTCP1 during the RI (1990 -1992 sampling) were found to contain the following compounds: Dibromochloromethane (5 µg/L), Bromodichloromethane (2 J - 6 µg/L), Chloromethane (5 µg/L J), Acetone (27 µg/L), Chloroform (23 µg/L), and 1,1,1 Trichloroethane (8 µg/L J). During the 1990-1992 and 1995 sampling events, background monitoring wells WT102A and WT102B, which are upgradient from the WTB well cluster, failed to yield any VOC detections. Results of the 1995 sampling event for newly installed upgradient monitoring wells WT112A, WT112B, WT113A, and WT113B yielded non-detects. Based on the most recent contoured ground water elevation data (see Figures 5-1 and 5-2), which suggests a southeast flow direction in the vicinity of monitoring wells WTB1 through WTB4 and WTCP1, some or all of the VOCs detected in these wells may be attributable to upgradient sources. Therefore, changes in ground water quality upgradient of the Himco Site with regards to VOCs may not be absolutely determined.

Downgradient monitoring wells that yielded detects of VOCs not attributable to possible laboratory contamination in the 1990-1992 sampling event include WTP1, WT101A, WT101B, WT106A, and WT111A. Contaminants detected and their ranges of values include 1,1-Dichloroethane (3 µg/L J), Benzene (1 to 3 µg/l J), Chloromethane (13 µg/L J), 1,2-

Dichloroethene (5 J - 6 µg/L), and Chloroethane (2 µg/L J). None of the VOCs detected in upgradient monitoring wells WTB1, WTB3, WTB4, and WTCP1 (excluding the possible laboratory contaminant Chloroform) were found in ground water samples from the downgradient monitoring wells in the RI sampling event. Contaminants detected in downgradient monitoring wells from the 1995 sampling event include 1,1 Dichloroethane (1 - 7 μg/L J), Benzene (1 J -15 μg/L), Chloroethane (6 μg/L J), Carbon Disulfide (0.7 - 2 μg/L J), 1,2 Dichloroethene (1 μg/L J), Bromodichloromethane (2 - 7 μg/L J), Dichloropropane (1 μg/L J), Chloroform (2 μg/L J), and Trichloroethene (0.9 µg/L J). Of the original monitoring wells sampled in 1990-1992 that had VOC detects, monitoring well WT101A showed a repeated occurrence of low levels of 1.1 Dichloroethane (3 μg/L J (1991) - 5 μg/L J (1995)) in the 1995 sampling, and monitoring well WT101B showed a repeated occurrence of Chloroethane (13 μg/L (1991) - 6 μg/L J (1995)). Monitoring well WT116A was newly installed in a downgradient region previously unmonitored in 1990-1992. The VOC results for monitoring well WT116A reveal that the downgradient water in this area is impacted by 1,1 Dichloroethane 7 J µg/L), 1,2 Dichloroethene (total) (1 J µg/L), TCE (0.9 J µg/L), and Benzene (15 µg/L) at a level exceeding the Benzene MCL (5 µg/L). Monitoring wells WTE2 and WT105A further downgradient of monitoring well WT116A showed no VOC contamination during the 1990-1992 groundwater sampling, but these monitoring wells were not resampled in 1995, because monitoring well WTE2 was not suitably constructed and monitoring well WT105A was farther downgradient than was consistent with the project objectives. Further groundwater monitoring at monitoring wells WT116A and WT116B and downgradient of monitoring well WT116A is indicated. It can be shown however, that the overall list of contaminants and their range of levels detected in 1995 from monitoring wells downgradient of the Himco Site are mostly similar to those from the 1990-1992 RI sampling event. This is particularly evident by comparing the 1995 sampling results from monitoring wells WT114A (1,1 Dichloroethane 5 µg/L J, Benzene 2 µg/L J) with the 1990-1992 sampling results of WTP1 (1.1 Dichloroethane 3 µg/L J. Benzene 1 µg/L J) or the 1995 and 1990-1992 results of sampling at WT101A (1,1- Dichloroethane 5 µg/L J) in 1995, 1,1 Dichloroethane 3 µg/L J and Benzene 3 µg/L J in 1990-1992). Based on these observations, it is concluded that the ground water quality downgradient of the Himco Site has not changed significantly since the RI sampling event with regards to VOCs.

SVOCs: In the 1990-1992 sampling event, monitoring wells WTB1, WTB2, WTB4, WTE2, WTM1, WTM2, WTP1, WT104A, and WT106A yielded SVOC analytical results. As discussed above, many phthalates are common laboratory contaminants and are often detected by an SVOC analysis; therefore, the bis(2-Ethylhexyl)phthalate and Di-n-octylphthalate results probably are due to laboratory contamination, as they are not detected at similar levels in the 1990 and 1991 analyses (see Table 5-5). While fluctuations in contaminant levels may be expected due to migration, ground water changes etc., such abrupt changes in findings, as exemplified by the results of monitoring well WTM2 ranging from a non-detect result in November 1990 to the detection of bis(2-Ethylhexyl)phthalate (110 µg/L) in September 1991, or the results of monitoring well WTP1 showing bis(2-Ethylhexyl)phthalate levels of 3 µg/L J on 23 September 1991 to 29 µg/L on 26 September 1991, strongly indicates that these compounds probably are not attributable to site contamination.

Most of the monitoring wells sampled in 1995 were newly installed wells. The SVOC results for the 1995 sampling round show detects in monitoring well WT101A (Di-ethylphthalate 11 μg/L) and monitoring well WT116A (Dibenzofuran 2 μg/L J, Fluorene 3 μg/L J, Anthracene 0.3 μg/L J, Carbazole 6 μg/L J, Naphthalene 0.4 μg/L J, Acenaphthene 3 μg/L J, and Phenanthrene 0.3 μ g/L J). Di-ethylphthalate (11 μ g/L) and bis(2-Ethylhexyl)phthalate (13 μ g/L) were the only non-qualified SVOC results; however, these results are most likely attributable to laboratory contamination. The SVOC compounds detected at the newly installed monitoring well WT116A were all found at low-levels and were "J" qualified. None of these compounds were found at other monitoring wells during the 1995 sampling event, but during the 1991 sampling event, monitoring well WTB2 yielded a low-level "J" qualified detection of Naphthalene (2 µg/L J). No detections of similar compounds were found in any of the upgradient monitoring wells, so the possible source of these SVOCs may be on-site. Monitoring well WT116A was newly installed in a region south of the Himco Site between monitoring wells WT111A and monitoring well cluster WT101. This region was newly sampled for SVOCs and VOCs in the 1995 sampling round, and the VOC analyses also reported contaminants of significant levels at monitoring well WT116A in the construction debris area. The fact that the SVOCs Dibenzofuran, Fluorene, Anthracene, Carbazole, Naphthalene, Acenaphthene, and Phenanthrene detected here are not common laboratory contaminants, and that significant VOC results were also discovered at this monitoring well suggest that this region may be a previously undiscovered area of contamination. The construction debris area may contain higher contamination than previously thought and/or a release may be occurring from the landfill and flowing in the groundwater under the construction debris area. Further ground water monitoring is necessary to confirm the veracity of these low-level SVOC results.

Pesticide/PCBs: All of the 1990-1992 and 1995 pesticide/PCB ground water results were non-detects.

Table 5-5	Analyte Le	vels as a Functi	on of Time	
Monitoring Well	Metals (μg/L)			
· · ·	NOV/DEC 90	JAN 91	SEP 91	SEP 95
WTB1	M n 36.1	NA	NA	NA
WTB2	Mn 2.1 B Se 2.3 BJ	NA	Mn 8.9 BJ	NA
WTB3	Sb 63.4 Mn 439 J	NA	Mn 359	NA
WTB4	Sb 35.2 B Mn 144 J	NA	Sb 13.7 B Mn 136 Pb 1.90 B	NA
WTCP1	Mn 8.5 B Se 2.1 BJ Hg 0.20 J	NA	NA	NA
WTD1	NA	NA	NA	NA
WTD2	NA	NA	NA	NA
WTD3	NA .	NA	NA .	NA
WTE1	NA	NA	NA	Mn 156
WTE2	Cu 7.6 B Pb 2.1 BJ Mn 9.1 BJ Se 2.1 B	NA	Pb 1.2 B	NA
WTE3	Ba 220 Sb 54.0 B As 5.3 B Mn 18.2 J	NA	NA	NA
WTM1	Sb 45.5B Se 3.0 B Mn 77.6 J	NA	Pb 2.0 BJ Mn 103.0	NA
WTM2	Mn 408	NA	Mn 331	NA
WINI	Mn 129.00 As 1.90 BJ Pb 3.00 BJ	NA	NA	NA .
WTO1	Mn 113 Sb 38.6 B	NA	'nΑ	Mn 205

Table 5-5	Analyte Levels as a Function of Time						
Monitoring Well	Metals (μg/L)						
	NOV/DEC 90	JAN 91	SEP 91	SEP 95			
WTP1	NA	NA	26 Sep 91 Mn 14.80 B 23 Sep 91 As 15.60 Mn 372.0	NA			
WT101A	As 10.80 Pb 1.70 BJ Mn 2070	NA	NA	As 7.8 B Mn 1060 Pb 1.7 U			
WT101B	NA	NA	As 4.20 B Mn 76.70	As 3.8 U Mn 49.3			
WT101C	NA	NA	Cr 206 As 8.10 BJ Mn 28.80	NA			
WT102A	As 1.10 BJ Mn 5.20 BJ	Mn 3.7 BJ	Mn 8.10 BJ	Mn 30.2 Sb 21.7 B			
WT102B	NA	NA	Mn 115	Mn 87.3 As 4.8 B Sb 29.7			
WT102C	NA	NA	ND	NA			
WT103A	ND	NA	As 2.30 BJ Cu 8.90 B Pb 1.40 BJ Mn 102	NA			
WT104A	Pb 2.3 BJ Mn 6.80 BJ	NA	Mn 5.4 B	NA			
WT105A	Cu 3.70 B Pb 2.40 BJ Mn 68.20	Cr 4.3 B Cu 4.90 BJ Pb 1.5 BJ Mn 21.6	Mn 5.40 B	NA			
WT106A	Pb 2.30 BJ As 5.40 BJ Mn 242 Se 3.90 BJ	Be 13.2 J Cd 7.0 Co 17.0 B Cu 16.6 BJ Pb 1.4 BJ Mn 244 Cr 8.6 BJ	NA	NA .			

Table 5-5	Analyte Le	evels as a Functi	on of Time	
Monitoring Well	Metals (μg/L)			
	NOV/DEC 90	JAN 91	SEP 91	SEP 95
WT111A	NA	NA	As 3.10 BJ Cr 2.90 B Mn 756 Ni 13.00 B	As 3.8 U Cr 4.0 U Mn 201 Ni 16.0 B X
NEW WELLS				
WT112A	NA	NA	NA	ND
WT112B	NA	NA	NA	Mn 119
WT113A	NA	NA	NA	ND
WT113B	NA	NA	NA	Mn 148
WT114A	NA	NA	NA	As 23.3 Mn 393
WT114B	NA	NA	NA	CN ⁻ 11.4 As 18.5 Mn 182
WT115A	NA	NA	NA	Mn 413
WT116A	NA	NA	NA	Mn 670
WT116B	NA	NA ,	NA	Mn 203
WT117A	NA	NA	NA	Cr 44.2 B Pb 3.4 Mn 230
WT117B	NA	NA	NA	Mn 61.2
WT118B	NA	NA	NA	Mn 76.9

NA: Not applicable or Not sampled during the sampling round, ND: Sampled but Non-detect

For the 1990-1992 Metals/Cyanide data, B: Value reported was less than the CRDL but greater than the IDL,

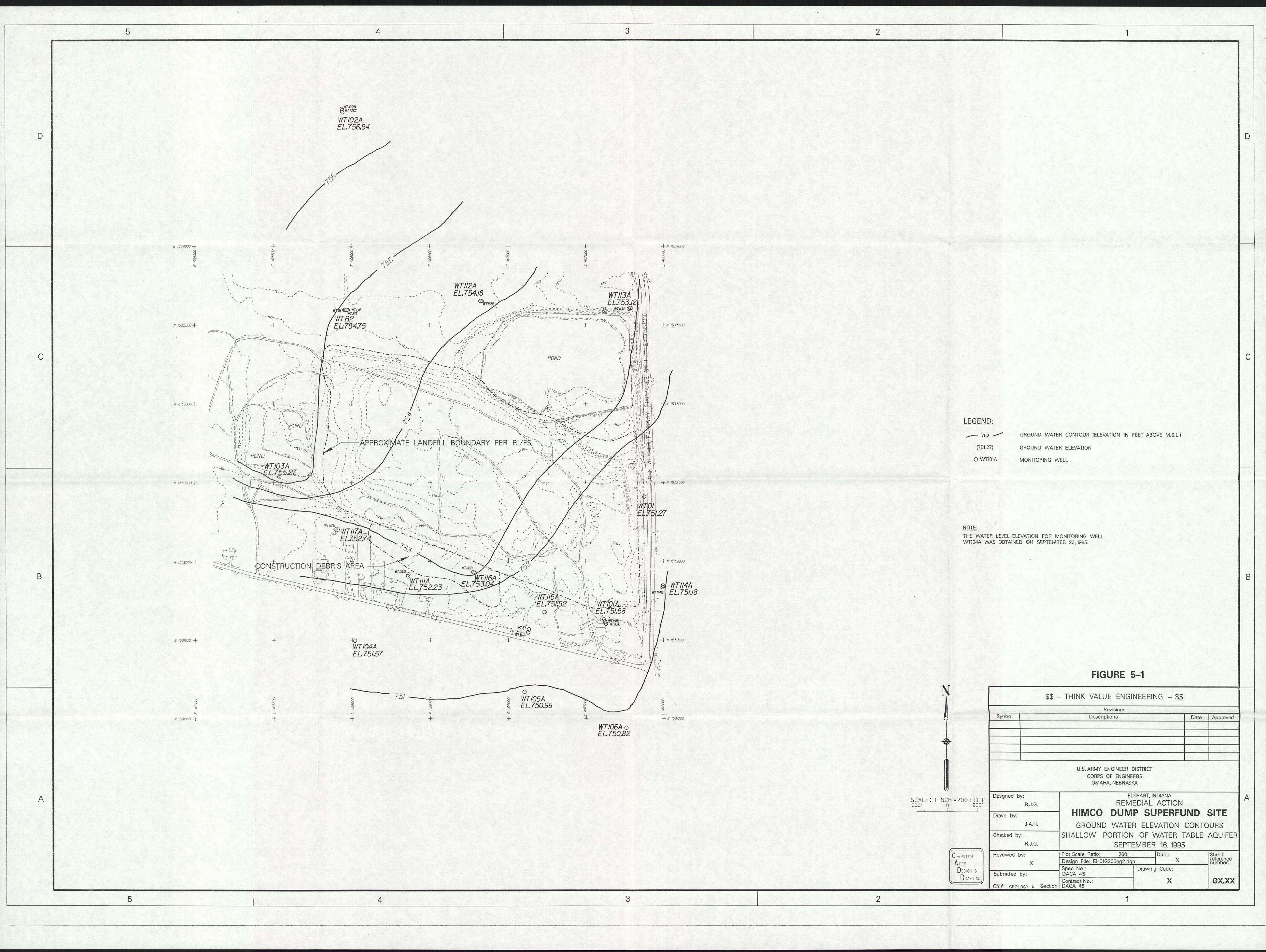
For the 1995 Metal/Cyanide data, B: "J" estimated concentration, X: Sample result is greater than the IDL but less than 5 times the amount found in any blank. These data should be considered as "U" qualified (National Functional Guidelines 1994).

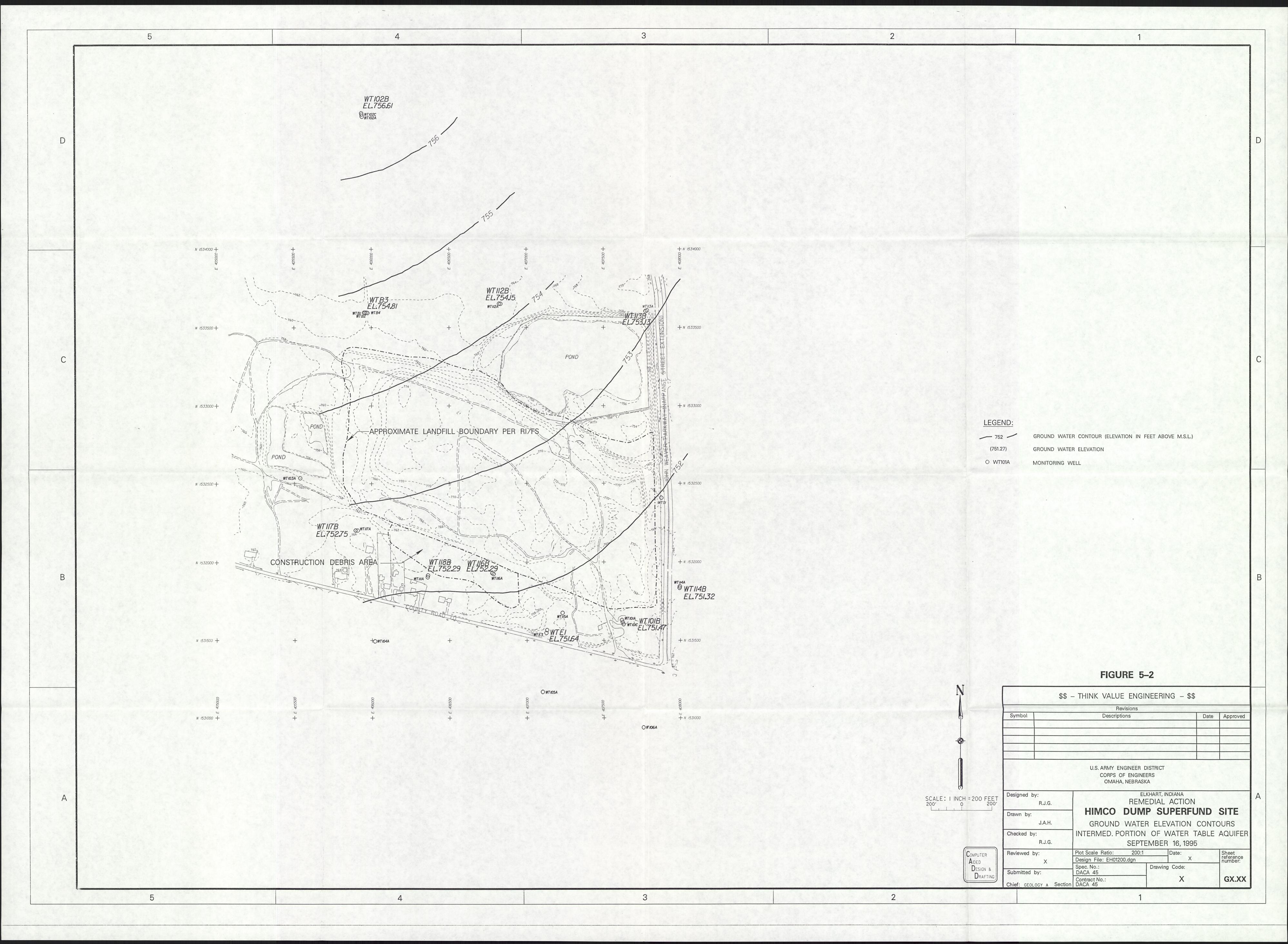
J: Estimated concentration.

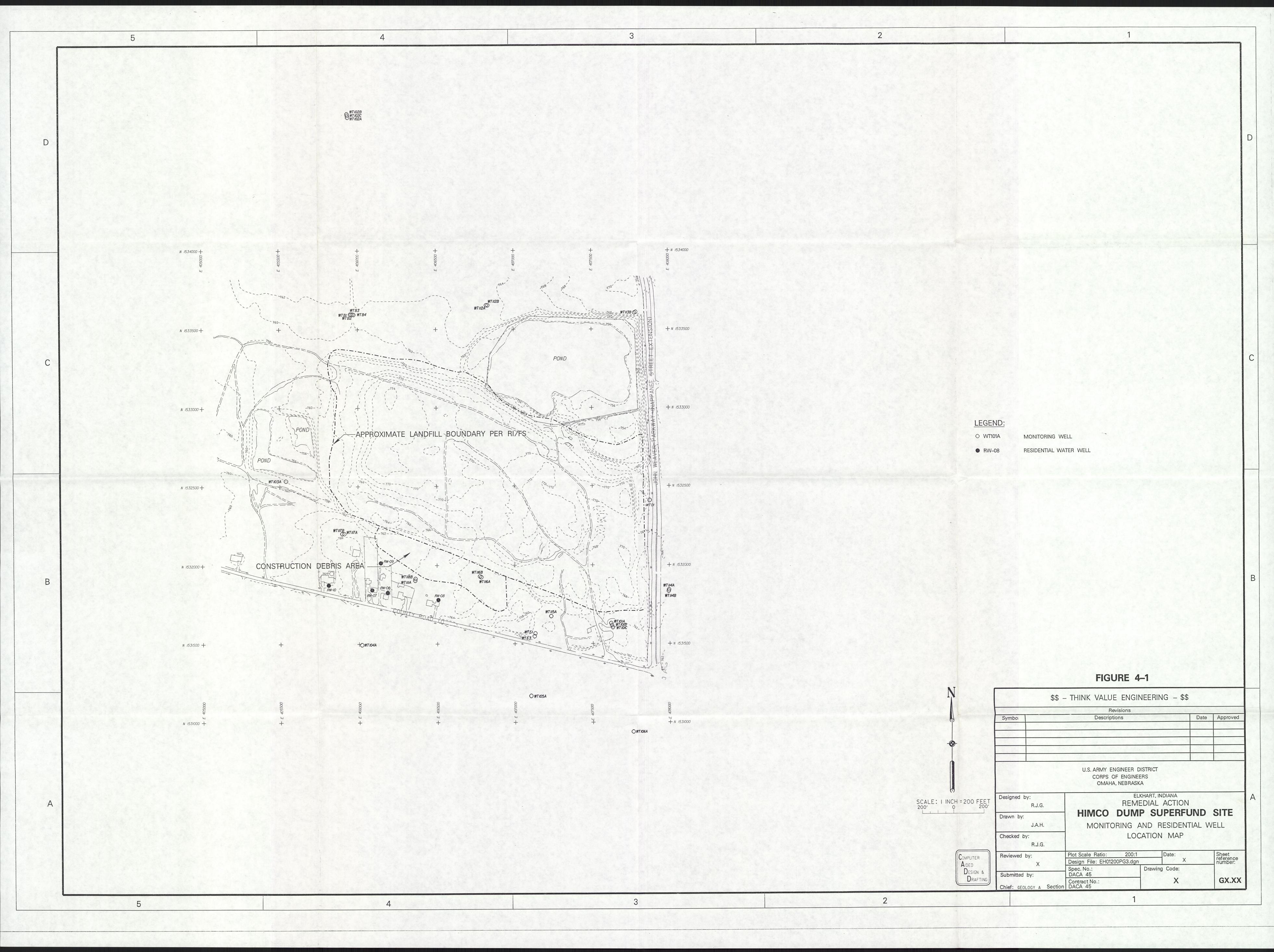
Table 5-5 Analyte Levels as a Function of Time								
Monitoring Well	VOCs (μg/L)							
	NOV/DEC 90	JAN 91	SEP 91	SEP 95				
WTB1	Dibromochloromethane 5 Bromodichloromethane 6	NA	NA	NA				
WTB2	ND	NA	ND	NA				
WTB3	ND	NA	Acetone 27 Chloromethane 5 J Chloroform 26	NA				
WTB4	Bromodichloromethane 2 J Chloroform 4 J	NA	Chloroform 23 Bromodichloromethane 2 J Dibromochloromethane 2 J	NA				
WTCP1	Methylene Chloride 2 J Chloroform 1 J 1,1,1 Trichloroethane 8 J Dibromochloromethane 2 J	NA	NA	NA				
WTD1	NA	NA	NA	NA				
WTD2	NA	NA	NA	NA				
WTD3	NA	NA	NA	NA				
WTE1	NA	NA	NA	ND				
WTE2	Hexanone 0.7 J	NA	Chloroform 2 J	NA				
WTE3	Hexanone 0.7 J	NA	NA	NA				
WTM1	ND	NA	Chloroform 2 J	NA				
WTM2	ND	NA	ND	NA				
WTNI	ND	NA	NA	NA				
WTO1	ND	NA	NA	ND				
WTPI	NA	NA	1,1Dichloroethane 3 J Benzene 1 J (23 Sep) Chloroform 6 J (26 Sep)	NA				

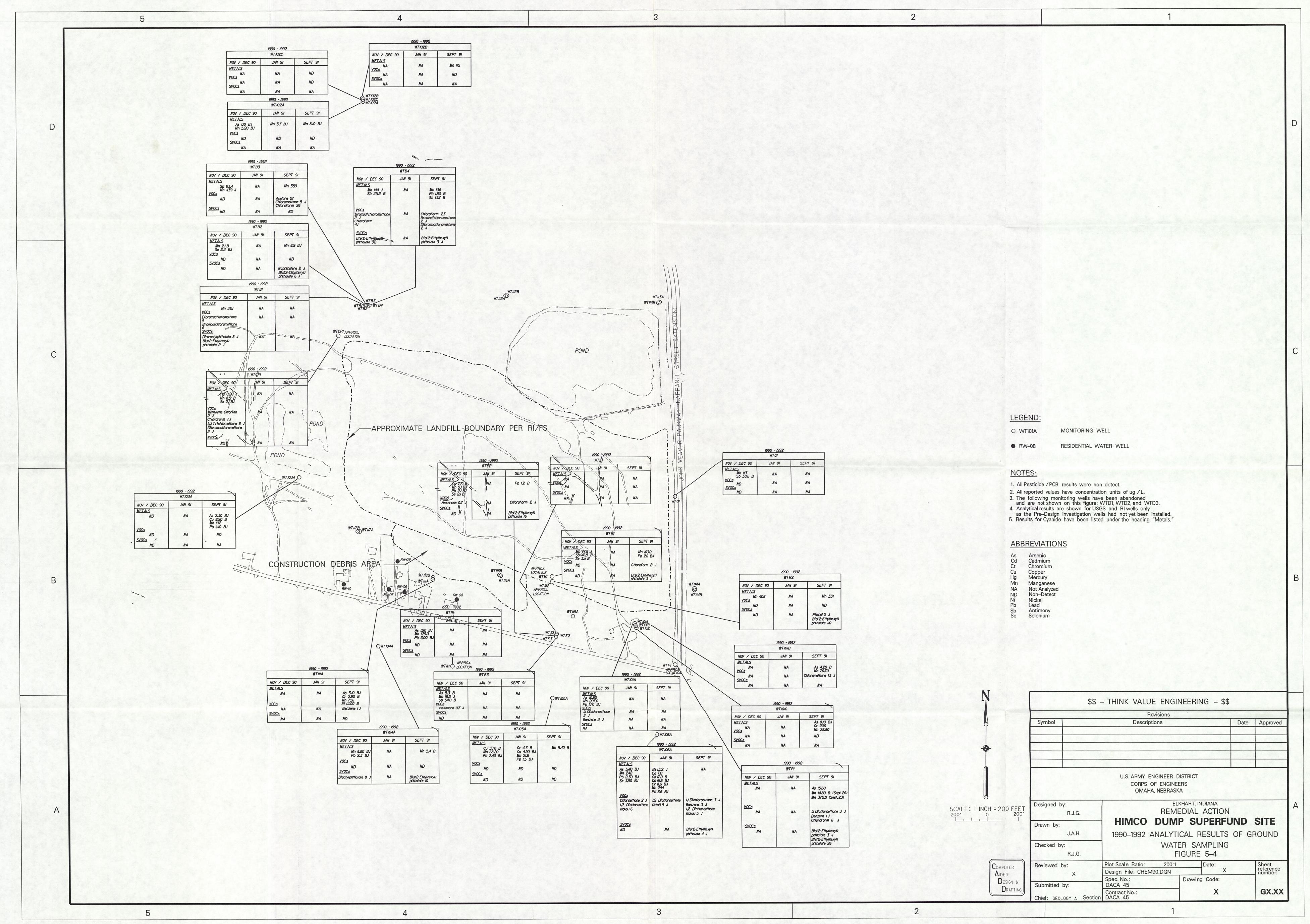
Table 5-5	Analyte	Levels as a Func	tion of Time					
Monitoring Well	VOCs (μg/L)							
	NOV/DEC 90	JAN 91	SEP 91	SEP 95				
WT101A	1,1 Dichloroethane 3 J Benzene 3 J	NA	NA	1,1Dichloroethane 5 J				
WT101B	NA	NA	Chloroethane 13 J	Chloroethane 6 J				
WT101C	NA	NA	ND	NA				
WT102A	ND	ND	ND	ND				
WT102B	NA	NA	ND	ND				
WT102C	NA	NA	ND	NA				
WT103A	ND	NA	ND	NA				
WT104A	ND	NA	ND	NA				
WT105A	ND	ND	ND	NA				
WT106A	Chloroethane 2J 1,2 Dichloroethene (total) 6	1,2 Dichloro ethene (total) 5 J	1,1 Dichloroethane 3 J Benzene 3 J 25SEP95 1,2 Dichloroethene (total) 5 J	NA				
WT111A	NA	NA	Benzene 1 J	ND				
NEW WELLS	3							
WT112A	NA	NA	NA	ND				
WT112B	NA	NA	NA	ND				
WT113A	NA	NA	NA	ND				
WT113B	NA	NA	NA	ND				

Table 5-5	Table 5-5 Analyte Levels as a Function of Time					
Monitoring Well	VOCs (μg/L)					
	NOV/DEC 90	JAN 91	SEP 91	SEP 95		
WT114A	NA	NA	NA	1,1 Dichloroethane 5J Carbon Disulfide 0.7 J Benzene 2 J		
WT114B	NA	NA	NA	1,1 Dichloroethane 1 J 1,2 Dichloroethene (total) 1 J Carbon Disulfide 2 J		
WT115A	NA	NA	NA	Benzene 1 J		
WT116A	NA	NA	NA	1,1 Dichloroethane 7 J 1,2 Dichloroethene (total) 1 J TCE 0.9 J Benzene 15		
WT116B	NA	NA	NA	ND		
WT117A	NA	NA	.NA	ND		
WT117B	NA	NA	NA	ND		
WT118B	NA	NA	NA	ND		


Table 5-5	Analyte Levels as	a Function of	Time	
Monitoring Well	SVOCs (µg/L)			
	NOV/DEC 90	JAN 91	SEP 91	SEP 95
WTB1	Di-n-octylphthalate 8 J bis(2-Ethylhexyl) phthalate 2 J	NA	NA	NA
WTB2	ND	NA	Naphthalene 2 J bis(2-Ethylhexyl) phthalate 6 J	NA
WTB3	ND	NA	ND	NA
WTB4	bis(2-Ethylhexyl) phthalate 32	NA	bis(2-Ethylhexyl) phthalate 3 J	NA
WTCP1	ND	NA	NA	NA
WTD1	NA	NA	NA	NA
WTD2	NA	NA	NA	NA
WTD3	NA	NA	NA	NA
WTE1	NA	NA	NA	ND
WTE2	ND	NA	Bis(2-Ethylhexyl) phthalate 16	NA
WTE3	ND	NA	NA	NA
WTM1	ND	NA	Bis(2-Ethylhexyl) phthalate 3 J	NA
WTM2	ND	NA	Phenol 2 J bis(2-Ethylhexyl) phthalate 110	NA
WTNI	ND	NA	NA	NA
WTO1	ND	NA	NA	bis (2-Ethylyhexyl) phthalate 13
WTP1	NA	NA	3J Bis(2-Ethylhexyl) phthalate 26 Bis(2-Ethylhexyl) phthalate SEP 29	NA
WT101A	NA	NA	NA	Di-ethylphthalate 11
WT101B	NA	NA	NA	ND


Table 5-5	Analyte Levels	as a Function of	Time	
Monitoring Well	SVOCs (µg/L)			
	NOV/DEC 90	JAN 91	SEP 91	SEP 95
WT101C	NA	NA	NA	NA
WT102A	NA	NA	NA	ND
WT102B	NA	NA	NA	ND
WT102C	NA	NA	NA	NA
WT103A	ND	NA	NA	NA
WT104A	Dioctylphthalate 8 J	NA	Bis(2-Ethylhexyl)phthalate 10	NA
WT105A	ND	ND	ND	NA
WT106A	ND	NA	Bis(2-Ethylhexyl)phthalate 4 J	NA
WT111A	NA	NA	ND	ND
NEW WELLS	S			
WT112A	NA	NA	NA	ND
WT112B	NA	NA	NA	ND
WT113A	NA	NA	NA	ND
WT113B	NA	NA	NA	ND
WT114A	NA	NA	NA	ND
WT114B	NA	NA	NA	Butylbenzylphthalate 0.2 J
WT115A	NA	NA	NA	bis (2- Ethylyhexyl)phthalate 0.4 J
WT116A	NA	NA	NA	Dibenzofuran 2 J Fluorene 3 J Anthracene 0.3 J Carbazole 6 J Naphthalene 0.4 J Acenaphthene 3 J Phenanthrene 0.3 J
WT116B	NA	NA	NA	ND
WT117A	NA	NA	NA	ND
WT117B	NA	NA	NA	ND
WT118B	NA	NA	NA	ND


Table 5-5 Analyte Levels as a Function of Time						
Monitoring Well	Pesticides/PCBs (μg/L)					
	NOV/DEC 90	JAN 91	SEP 91	SEP 95		
WTBİ	ND	NA	NA	NA		
WTB2	ND	NA	ND	NA		
WTB3	ND	NA	ND	NA		
WTB4	ND	NA	ND	NA		
WTCP1	ND	NA	NA	NA		
WTD1	NA	NA	NA	NA		
WTD2	NA	NA	NA	NA		
WTD3	NA	NA	NA	NA		
WTEI	NA .	NA	NA	ND		
WTE2	ND	NA	ND	NA		
WTE3	ND	NA	NA	NA		
WTM1	ND	NA	NA	NA		
WTM2	ND	NA	ND	NA		
WTN1	ND	NA	NA	NA		
WTO1	ND	NA	NA	ND		
WTPI	NA	NA	ND	NA		
WT101A	ND	NA	NA	ND	•	
WT101B	NA	NA	ND	ND		
WT101C	NA	NA	ND	NA		
WT102A	ND	ND	ND	ND		
WT102B	NA	NA	ND	ND		
WT102C	NA	NA	ND	NA		
WT103A	ND	ND	ND	NA		
WT104A	ND	NA	ND	NÀ		
WT105A	ND	ND	ND	NA		
WT106A	ND	ND	ND	NA		


Table 5-5 Analyte Levels as a Function of Time							
Monitoring Well	Pesticides/PCBs (μg/L)						
WT111A	NA	NA	ND	ND			
NEW WELLS							
WT112A	NA	NA	NA	ND			
WT112B	NA	NA	NA	ND			
WT113A	NA	NA	NA	ND			
WT113B	NA	NA	NA	ND			
WT114A	NA	NA	NA	ND			
WT114B	NA	NA	NA	ND			
WT115A	NA	NA	NA	ND			
WT116A	NA	NA	NA	ND			
WT116B	NA	NA	NA	ND			
WT117A	NA	NA	NA	ND			
WT117B	NA	NA	NA	ND			
WT118B	NA	NA	NA	ND			

The 1990-1992 data in this table was compiled from the raw analytical data published in Volume 4 of the Final Remedial Investigation Report (Donohue, 1992), and the original data qualifiers used in that report are presented along with the data. NA: Not applicable or not sampled, ND: Not detected, J: Estimated Concentration.

.m(4139.geop4) edghjah@geop4. Thu Mar 21 08:51:02 CST 1996

6.0 QUALITY CONTROL SUMMARY

6.1 Sampling Procedures

The procedures detailed in the approved FSP Addendum dated July 1995 were followed as written with a few minor exceptions, which are detailed in Section 4.0 of this document.

6.2 Summary of Daily Quality Control Reports and Field Log Books

Daily Quality Control Reports (DQCRs) were completed for each day of field work in order to document those items pertinent to sampling activities. The Field Log Book documented all field activities performed at the site. A summary of the pertinent information contained in the DQCRs and Field Log Books is provided below.

6.2.1 Work Performed

Field work was initiated at the Himco Site on August 2, 1995 and completed October 20, 1995. The monitoring well development and sampling was completed during this time. Nineteen existing and newly installed monitoring wells were sampled at this site.

6.3 Analytical Procedures

All organic analyses were performed by the Ross Analytical Services, Inc., Strongsville, Ohio using approved EPA CLP SOW analytical procedures. The inorganic analyses were performed by American Analytical and Technical Services, Baton Rouge, Louisiana.

6.4 Quality Control Activities

The Quality Assurance/Quality Control (QA/QC) procedures are briefly described in the following paragraphs. The results of the field and laboratory QC samples, as they pertain to each analytical test, are discussed in Paragraph 6.5.

6.4.1 Trip Blanks

A trip blank accompanied each cooler containing ground water collected for VOC analysis. The trip blank was used to assess contamination from sample container preparation or shipping procedures. The trip blank and associated samples were then transported together to the lab and analyzed for VOCs.

6.4.2 Field Duplicates

Field duplicate samples were collected for this project, but the relative percent differences (RPDs) for organic samples were not calculated by the laboratory.

6.4.3 Surrogate Spikes

Surrogate standards were added to all samples, lab QC samples, and lab blanks analyzed for organic compounds. Surrogates are used to monitor the efficiency of the extraction and/or analysis of the sample within a given matrix. If the recovery of any two volatile surrogates was outside the limits, the sample was reanalyzed. No reanalysis was required for VOCs, PCBs/pesticides, or metals.

6.4.4 Matrix Spikes

Matrix spikes (MS) were analyzed by Ross Laboratory for VOCs, SVOCs and pesticides/PCBs at the frequency of at least one per twenty samples of the same matrix. Matrix recoveries are used to measure analytical bias resulting from sample matrix interferences.

6.4.5 Matrix Spike Duplicates

Matrix spike duplicates (MSDs) were analyzed by Ross Laboratory along with the matrix spike samples. The RPD of MS/MSD pair was used to measure analytical precision.

6.4.6 Laboratory Blanks

Laboratory blanks were used to assess laboratory induced contamination. Laboratory blanks were analyzed at the frequency required by the method.

6.4.7 Laboratory Control Samples

Laboratory control samples (LCSs) were not utilized in this project.

6.4.8 Rinsate Blanks

Rinsate blanks are samples of de-ionized water than are rinsed over decontaminated pieces of sampling equipment, collected, and submitted to the laboratory for analysis. The purpose of rinsate blanks is to assess the effectiveness of equipment decontamination, and to determine the if non-dedicated decontaminated sampling equipment is potentially cross-contaminating samples.

6.5 Data Presentation

6.5.1 Volatile Organic Compounds

6.5.1.1 Holding Times

All samples were analyzed within the specified holding times.

6.5.1.2 Method Blanks

The method blanks were not found to contain any contamination. For every method blank analyzed, the results for all VOC compounds were non-detects.

6.5.1.3 Surrogate Spikes

Surrogate spike recoveries were within acceptable limits.

6.5.1.4 Matrix Spike/Matrix Spike Duplicates

Samples from monitoring well WT112A were chosen to be the MS/MSD samples. All volatile MS and MSD recoveries and RPDs were within the QC limits. All volatile MS and MSD recoveries were well within the QC limits, except for 1,1-Dichloroethene for which the RPD was slightly above the limit. Since this compound was not found in the unspiked sample, no effect on the data quality is expected.

6.5.1.5 Internal Standards

All volatile and semi-volatile internal standard areas were well within the QC limits.

6.5.1.6 Field Duplicates

Field duplicate samples were collected for this project, but the RPDs for organic samples were not calculated by the laboratory.

6.5.1.7 Trip Blanks

Trip blanks were prepared and accompanied every cooler containing VOCs. The results of the trip-blank analysis are presented below in Table 6-1. The trip blanks associated with sampling events between the dates of September 25 through September 27, 1995 (SDG EARR 3) were contaminated with Methylene Chloride and low levels of Acetone. The trip blanks associated with sampling events between the dates of September 18 through September 25, 1995 (SDG EARP0) were contaminated with Methylene Chloride and low levels of Chloroform. Listed below in Table 6-1 is a summary of the trip blank contamination, and the associated environmental samples in which similar analytes are considered "U" (non-detect) qualified on the basis of trip blank contamination.

6.5.1.8 Rinsate Blanks

Rinsate blanks were collected on September 26, 1995 from the two Grundfos pumps (#110 and #220) utilized during the groundwater sampling. The Grundfos pumps were decontaminated and de-ionized water was pumped through them and then collected in order to obtain the rinsate blanks. Listed below in Table 6-1 is a summary of the rinsate blank contamination, and the associated environmental samples in which similar analytes are considered "U" (non-detect) qualified on the basis of rinsate blank contamination.

Table 6-1
Summary of Rinsate and Trip-Blank Contamination and the Associated Samples Qualified

	Туре	Contamination Found in Trip Blanks or Rinsate Blanks						
Sample Identification		Methylene Chloride	Acetone	Chloroform	Bromo- dichloro- methane	1,2-dichloro- propane	4-Methyl- 2- Pentanone	
EARP0	Trip Blank			0.9 J μg/L				
EARPI	Sample							
EARP2	Sample							
EARP3	Trip Blank			0.9 J μg/L				
EARP4	Sample							
EARP5	Sample							
EARP7	Trip Blank			0.8 J μg/L				
EARP6	Sample					·		
EARP8	Sample							
EARP9	Trip Blank			0.7 J μg/L				
EARQ1	Sample					4 J μg/L		
EARQ0	Duplicate					4 J μg/L		
EARQ2	Sample							
EARQ4	Sample							
EARQ3	Sample							
						•		
EARQ5	Trip Blank	10 μg/L						
EARQ7	Sample	5 J μg/L						

Table 6-1
Summary of Rinsate and Trip-Blank Contamination and the Associated Samples Qualified

Sample Identification	Туре	Contamination Found in Trip Blanks or Rinsate Blanks						
		Methylene Chloride	Acetone	Chloroform	Bromo- dichloro- methane	1,2-dichloro- propane	4-Methyl- 2- Pentanone	
EARQ6	Sample	8 J μg/L						
EARR8	Trip Blank	2 J μg/L	4 J μg/L					
EARR3	Sample	0.7 μg/L						
EARR5	Duplicate	2 J μg/L						
EARR2	Sample	0.9 J μg/L						
EARR4	Sample	1 J μg/L						
EARQ9	Sample	l J μg/L						
EARR9	Trip blank	l J μg/L	4 J μg/L				1 J μg/L	
EARR0	Sample	l J μg/L						
EARR6	Sample	2 J μg/L						
EARR1	Sample	1 J μg/L						
EARQ8	Rinsate Blank	2 J μg/L	7 J μg/L	16	2 J μg/L	1 J μg/L		
EARR7	Rinsate Blank	2 J μg/L	2 J μg/L	47	7 J μg/L	2 J μg/L		
EARQ1	Sample					4 J μg/L		
EARQ0	Duplicate					4 J μg/L		
EARS0	Source Water	9 J μg/L		6 J μg/L	4 J μg/L			

6.5.1.9 Overall Assessment

VOC results are acceptable for project use, and they should satisfy project data quality objectives. A "J" code was assigned for samples where the analyte was positively identified, but the associated numerical value is the approximate concentration of the analyte in the sample. Analytes were found in the trip-blanks and rinsate blanks, and such analytes, if they also found in the associated environmental samples at levels less than five times the associated blank contamination, were assessed as being potentially attributable to contamination and were "U" (non-detect) qualified. These data have been validated by USEPA Region V, and they are judged to be of sufficient quality to support the project's data quality objectives.

6.5.2 Semi-Volatile Organic Compounds

6.5.2.1 Holding Times

All samples analyzed for SVOCs were extracted within the seven-day holding time, and all the extracts were promptly analyzed, except for sample EARS0 (source-water sample). Sample EARS0 was initially extracted along with the other sample, but later failed the QC criteria. Therefore, sample EARS0 was later re-extracted at such a time that it failed the fourteen-day holding period. The laboratory did not provide the original analysis of sample EARS0. Because no target compounds were found in this sample, the USEPA data validators deemed that all the semi-volatile target results must be considered "R" (Unusable) qualified, and the values for the two tentatively identified compounds (TICs) should be considered "J" qualified (estimated).

6.5.2.2 Method Blanks

Some method blanks had bis(2-Ethylhexyl)phthalate and Di-n-butylphthalate contamination. See Table 6-2, below.

Table 6-2
Method Blank Contamination

		Det. Limit	Result
Sample ID	Compound	$\mu g/L$	$(\mu g/L)$
SBLKP1	bis(2-Ethylhexyl)phthalate	10	0.2 J
	Di-n-butylphthalate	10	0.3 J
SBLKP4	bis(2-Ethylhexyl)phthalate	10	0.1 J
SBLKM1	bis(2-Ethylhexyl)phthalate	10	1 J
	Diethylphthalate	10	0.6 J

6.5.2.3 Surrogate Spikes

Surrogate spike recoveries were within acceptable QC limits.

6.5.2.4 Matrix Spike/Matrix Spike Duplicates

The sample from monitoring well WT112A was the source of the MS and MSD samples. All MS and MSD recoveries were within the QC limits except for the recovery of 1,2,4 trichloro-benzene, which was marginally below the lower QC limit. All of the RPDs were within acceptable QC limits. Since 1,2,4 trichlorobenzene was not present in the unspiked sample, the results for 1,2,4 trichlorobenzene in monitoring well WT112A should be considered "UJ" (estimated quantitation limits).

6.5.2.5 Laboratory Duplicate Samples

Laboratory duplicates samples were not reported for this analysis.

6.5.2.6 Field Duplicates

Field duplicate samples were collected for this project, but the RPDs were not calculated by the laboratory.

6.5.2.7 Rinsate Blanks

Rinsate blanks were collected on September 26, 1995 from the two Grundfos pumps (#110 and #220) utilized during the groundwater sampling. The Grundfos pumps were decontaminated and de-ionized water was pumped through them and then collected in order to obtain the rinsate blanks. The rinsate blank results were non-detects.

6.5.2.8 Overall Assessment

Semi-volatile organic results were considered acceptable for project use by a USEPA data validation. A "J" code was assigned for samples where the analyte was positively identified, but the associated numerical value is the approximate concentration of the analyte in the sample.

6.5.3 Pesticides/PCBs

6.5.3.1 Holding Times

All samples were analyzed within the specified holding times.

6.5.3.2 Method Blanks

The method blanks were free of contamination.

6.5.3.3 Surrogate Spikes

All surrogate recoveries were within the QC limits, except for decachlorobiphenyl in a duplicate sample (EARQ0) from monitoring well WT116A, and sample EARQ1 from monitoring well WT116A, which were both slightly below the lower QC limit. Since neither of the unspiked samples contained any target analytes, the pesticide/PCB results for samples EARQ0 and EARQ1 should be considered "UJ" (estimated quantitation limits).

6.5.3.4 Matrix Spike/Matrix Spike Duplicates

MS/MSD recoveries were within acceptable QC limits. The RPDs for MS/MSD recoveries were within acceptable QC limits.

6.5.3.5 Laboratory Duplicate Samples

No Laboratory Duplicates were performed for this project.

6.5.3.6 Field Duplicates

Field duplicate samples were collected for this project, but the RPDs were not calculated by the laboratory.

6.5.3.7 Rinsate Blanks

Rinsate blanks were collected on September 26, 1995 from the two Grundfos pumps (#110 and #220) utilized during the groundwater sampling. The Grundfos pumps were decontaminated and de-ionized water was pumped through them and then collected in order to obtain the rinsate blanks. The rinsate blank results were non-detects.

6.5.3.8 Overall Assessment

The pesticide/PCB results are acceptable for project use.

6.5.4 Metals and Cyanide Sample Data Group MEAFG1

6.5.4.1 Holding Times

All samples in Sample Data Group (SDG) MEAFG1 analyzed for metals were extracted within holding times, and all the extracts were promptly analyzed.

6.5.4.2 Preparation Blank and Continuing Calibration Blank

The preparation blank and continuing calibration blank (CCB) results exhibited several metal contaminants (see Table 6-3 below); therefore, these results were "B" qualified (considered estimated concentrations). If similar metals were also found in the associated environmental samples, these results were "B" qualified as well, because of the blank contamination by USEPA data reviewers. Those USEPA "B" qualified metal results that were greater than the IDL but less than five times the amount found in the preparation blank or continuing calibration blanks are further qualified "U" in this report in accord with the review actions promulgated in the guidance document, "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review" (1994).

Table 6-3
Preparation and CCB Contamination for SDG MEAFG1

		Result
Sample ID	<u>Element</u>	$(\mu g/L)$
Preparation Blank	Al	104.031
	Ba	1.400
	Mg	22.307
	Mn	1.188
	K	80.975
	V	4.507
	Zn	1.188
CCB	Ba	4.4
	Be	0.7
	Ca	77.9
	Cr	8.9
	Cu	7.4
	Fe	12.8
	Pb	2.2
	Mg	41.1
	Mn	2.0
	Ni	10.5
,	K	212.1
	Ag	8.4
	V	8.1
	Zn	1.4

6.5.4.3 Matrix Spike and Matrix Spike Duplicate Samples

The samples (MEAFH4S/MEAFH4D) from monitoring well WT117A had RPD values greater than 25%. The duplicate RPDs for these duplicate samples are: Al (60.8%), Ca (200.0%), Fe (47.3%), Mg (200.0%), Ni (200.0%), K (34.4%), Na (44.1%), and Zn (33.3%). These data were not flagged because the duplicate differences did not exceed the technical criteria of \pm Contract Required Detection Limits (CRDL) for water samples.

6.5.4.4 Rinsate Blanks

The two rinsate blanks collected for metals analysis were analyzed as part of SDG MEAFG1. The results of the rinsate blank analyses are presented below in Table 6-4. Those USEPA "B" qualified metal results that were greater than the IDL but less than five times the amount found in the rinsate blanks are further qualified "U" in this report in accord with the review actions promulgated in the USEPA guidance document, "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review" (1994). All of the metals listed below except for Thallium are also contaminants in the preparation or continuing calibration blanks, so the metals listed in Table 6-3, above, will be "B" qualified on the basis of their discovery in the preparation or continuing calibration blanks. Thallium however was not found in the preparation or continuing calibration blanks, and Thallium results, if the Thallium levels are above the IDL but less than five times the rinsate blank contamination, will be qualified solely on the basis of its detection in rinsate blank MEAFJ3.

6.5.4.5 Overall Assessment

The data were validated by the USEPA and were appropriately qualified. A "B" data qualifier was assigned for samples where the analyte was positively identified, but the associated numerical value is considered as an "J" estimated concentration due to contamination. The metal and the cyanide results are of sufficient quality to support the project's data quality objectives.

6.5.5 Metals and Cyanide Sample Data Group MEAFH6

6.5.5.1 Holding Times

All samples analyzed for metals were extracted within holding times, and all the extracts were promptly analyzed.

6.5.5.2 Preparation Blank and Continuing Calibration Blank

The continuing calibration blank and preparation blank results also exhibited several metal contaminants (see Table 6-5 below). If similar metals were also found in the associated environmental samples, these results were "B" qualified as well, because of the blank contamination by USEPA data reviewers. Those USEPA "B" qualified metal results that were greater than the IDL but less than five times the amount found in the preparation blank or continuing calibration

blanks are further qualified "U" in this report in accord with the review actions promulgated in the guidance document, "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review" (1994).

Table 6-4 Rinsate Blank Results

Element	Sample Identification		
Element	MEAFJ3	MEAFH4	
Al	116 μg/L	204 μg/L	
Cu	10 μg/L	ND	
Fe	18.4 μg/L	14.6 μg/L	
Mn	1.2 μg/L	1.2 μg/L	
Na	307 μg/L	1290 μg/L	
Ni	ND	11.2 μg/L	
Tl	7.5 μg/L	ND	
Zn	4.3 μg/L	3.4 μg/L	
K	147	197 μg/L	
Mg	49.3	25.8	
Ca	138	118	
Ba	1.6	ND	
ND: Non-detect			

Table 6-5
Preparation and CCB Contamination for SDG MEAFH6

		Result
Sample ID	<u>Element</u>	$(\mu g/L)$
Preparation Blank	Al	104.992
	K	75.972
	Na	435.883
ССВ	Al	91.9
	Ba	2.1
	Sb	2.5
	Fe	6.1
	K	84.8
	Na	312.1
	Zn	5.0

6.5.5.3 Matrix Spike and Matrix Spike Duplicate Samples

The samples (MEAFJ4S/MEAFJ4D) obtained from a water main (for the pupose of analyzing the source water) had RPD values greater than 25%. The duplicate RPDs for these duplicate samples are: Al (35.7%), Ba (1.5%), Fe (1.0%), Ca (0.8%), Fe (1.0%), K (2.8%), Mg (0.8%), Mn (1.5%), Na(4.1%), and Zn (23.1%). These data were not flagged, because the duplicate differences did not exceed the technical criteria of \pm Contract Required Detection Limits (CRDL) for water samples.

6.5.5.4 Overall Assessment

The data were validated by the USEPA and were appropriately qualified. A "B" data qualifier was assigned for samples where the analyte was positively identified, but the associated numerical value is considered as an "J" estimated concentration due to preparation or continuing calibration blank contamination. The metal and the cyanide results are of sufficient quality to support the project's data quality objectives.

6.6 Overall Project Data Assessment

The trip blanks associated with sampling events between the dates of September 25 through September 27, 1995 were contaminated with Methylene Chloride and low levels of Acetone. The trip blanks associated with sampling events between the dates of September 18 through September 25, 1995 were contaminated with Methylene Chloride and low levels of Chloroform. Analytes were found in the trip-blanks, and such analytes, if they were also found in the associated environmental samples, were appropriately qualified as being potentially contaminated. These data have been validated by USEPA Region V, and the data are judged to be of sufficient quality to support the

project's data quality objectives.

The SVOC and the Pesticides/PCB data are of sufficient quality to support the project's data quality objectives. The USEPA has also validated all of this data and deemed it acceptable and usable, with the qualifications as described in the above narrative and tables.

The metal and cyanide data are of sufficient quality to support the project's data quality objectives. The preparation blank, the continuing calibration blanks of both SDGs, and rinsate blanks were contaminated with a variety of metals; however, the USEPA Region V data reviewers "B" qualified the analytes in the environmental samples affected by the preparation and continuing calibration blank contamination and deemed their concentrations to be "J" estimated due to the contamination. Metal results that were greater than the IDL but less than five times the amount found in the preparation blank, continuing calibration blanks, or rinsate blanks are further qualified "U" in this report in accord with the review actions promulgated in the guidance document, "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review" (1994).

7.0 CONCLUSIONS

In general, the Pre-Design field investigation results confirm the findings of the RI in that contaminants in the ground water attributable to the Himco Site continue to migrate off-site. The principal conclusions of the Pre-Design investigation are presented below. Differences between the RI and Pre-Design investigations are noted.

- Measurements from site monitoring wells confirm that the ground water flows roughly in a south to southeast direction in both the shallow and intermediate portions of the water table aquifer.
- Ground water was encountered from approximately 3 to 16 feet bgs at elevations ranging from 751 to 757 feet MSL. The ground water elevations show a relatively flat horizontal hydraulic gradient (average 0.001 feet/feet).
- Ground water quality both up and down gradient of the Himco Site does not appear to have changed significantly since the RI sampling event with regards to Metals, VOCs, SVOCs, and Pesticides/PCBs.
- Metals detected in both the 1990-1992 and 1995 sampling events include Antimony, Arsenic, Chromium, Lead, and Manganese. For each of these metals, a comparison of the results between the RI and current sampling rounds shows similar ranges of concentrations. Manganese and Antimony were found at levels exceeding the Antimony MCL (6 ug/L) and the Manganese Secondary MCL (50 ug/L) in both the 1990-1992 and 1995 ground water sampling events. Cyanide was the only newly discovered inorganic detected in the most current sampling round. The occurrence of Cyanide is associated with a new monitoring well location (WT114B).
- Benzene was detected in ground water from newly installed monitoring well WT116A (in the construction debris area) at 15 ug/L, which exceeds the current MCL of 5 ug/L. This area warrants further ground water monitoring.
- The continued migration of 1,1 Dichloroethane, Benzene, 1,2 Dichloroethene, and Chloroethane with respect to time has been substantiated by low-level detections of these compounds in 1990-1992 and 1995.
- Carbon Disulfide and Trichloroethene were newly detected VOC compounds in the 1995 sampling event. These VOCs were found in the newly installed monitoring wells.
- The 1990-1992 SVOC analyses yielded several detections of phthalates, but none of these detections could be reproduced during repeated sampling. Phthalates were analyzed for in 1995, and sporadic low-level detections of phthalates occurred.

Further monitoring should determine if these phthalate detections are attributable to the landfill or laboratory contamination.

The 1995 sampling at monitoring well WT116A in the construction debris area yielded several qualified SVOC detections. Such compounds were not detected in the 1990-1992 sampling event. The fact that the SVOCs are not common laboratory contaminants and that significant VOC results were also reported for this monitoring well suggests that this region may contain higher levels of contamination than previously recognized and/or a release is occurring from the landfill and is travelling in the ground water beneath the construction debris area. Further monitoring is recommended.

8.0 REFERENCES

- Duwelius, Richard F. and Silcox, Cheryl A., 1991, Ground-Water Levels, Flow, and Quality in Northwestern Elkhart County, Indiana, 1980-89.
- RUST Environment and Infrastructure, 1995, Addendum to the Final Quality Assurance Project Plan for Remedial Design/Remedial Action Field Activities at the Himco Dump Superfund Site, Elkhart, Indiana.
- SEC Donohue, 1992, Final Remedial Investigation Report, Himco Dump Remedial Investigation/Feasibility Study, Elkhart, Indiana.
- United States Army Corps of Engineers, 1995, 30% Design Analysis, Himco Dump Superfund Site.
- United States Army Corps of Engineers, 1995, Addendum II Field Sampling Plan for Remedial Design/Remedial Action Field Activities at the Himco Dump Superfund Site, Elkhart, Indiana.
- United States Environmental Protection Agency, 1993, Record of Decision, Himco Dump Site, Elkhart, Indiana.
- United States Environmental Protection Agency, 1975, Manual of Water Well Construction Practices, USEPA Office of Water Supply Report No. EPA-570/9-75-001, 156 pp.

APPENDIX A:

PHOTOGRAPHS

Exposure No. 1: View to the southwest of the WT101 monitoring well cluster.

Exposure No. 2: Closeup of monitoring well WT101A.

Exposure No. 3: Closeup of monitoring well WT101B.

Exposure No. 4: Closeup of monitoring well WT101C.

Exposure No. 5: View to the southeast of the WT102 monitoring well cluster.

Exposure No. 6: Closeup of monitoring well WT102A.

Exposure No. 7: Closeup of monitoring well WT102B.

Exposure No. 8: Closeup of monitoring well WT102C.

Exposure No. 9: Closeup of monitoring well WT103A.

Exposure No. 10: Closeup of monitoring well WT104A.

Exposure No. 11: Closeup of monitoring well WT105A.

Exposure No. 12: Closeup of monitoring well WT106A.

Exposure No. 13: Closeup of monitoring well WT111A.

Exposure No. 14: View to the west of the WTB monitoring well cluster.

Exposure No. 15: Closeup of monitoring well WTB1.

Exposure No. 16: Closeup of monitoring well WTB2.

Exposure No. 17: Closeup of monitoring well WTB3.

Exposure No. 18: Closeup of monitoring well WTB4.

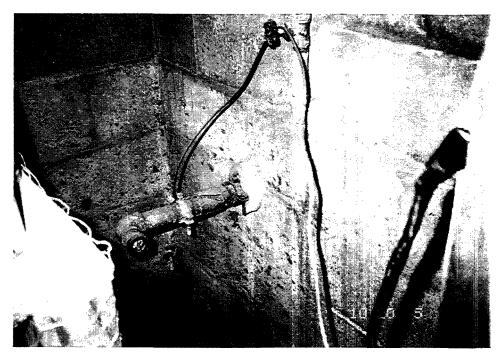
Exposure No. 19: Closeup of monitoring well WTCP1.

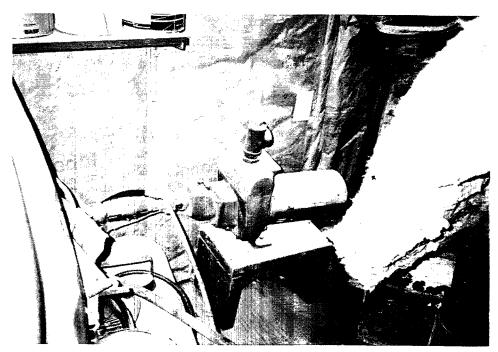
Exposure No. 20: Closeup of monitoring well WTE1.

Exposure No. 21: Closeup of monitoring well WTE2.

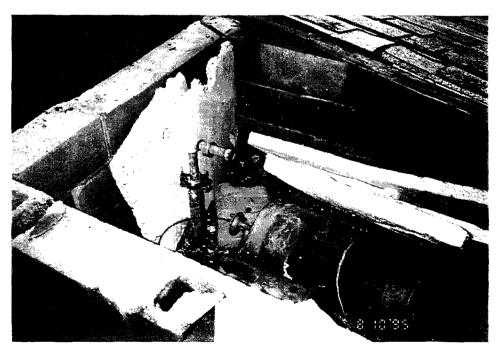
Exposure No. 22: Closeup of monitoring well WTE3.

Exposure No. 23: Closeup of monitoring well WTM1.

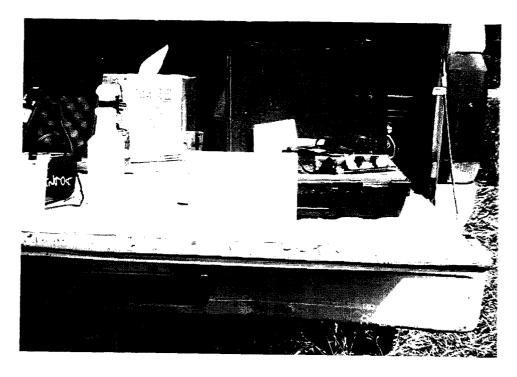

Exposure No. 24: Closcup of monitoring well WTM2.

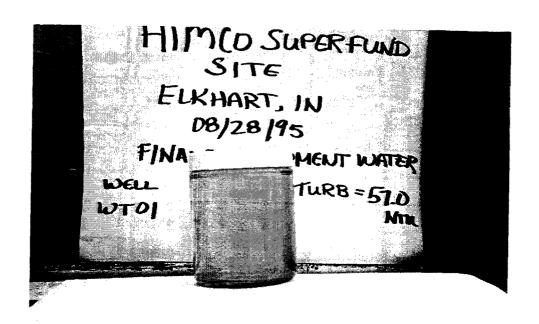

Exposure No. 25: Closeup of monitoring well WTO1.

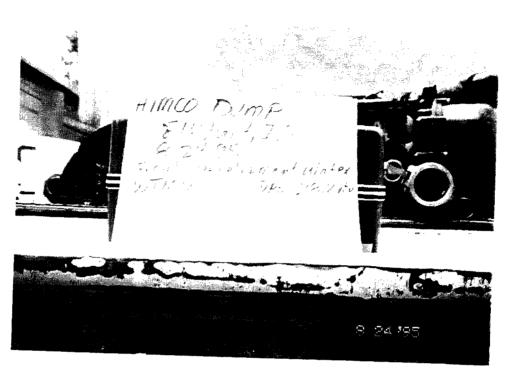
Exposure No. 26: Closeup of monitoring well WTP1.

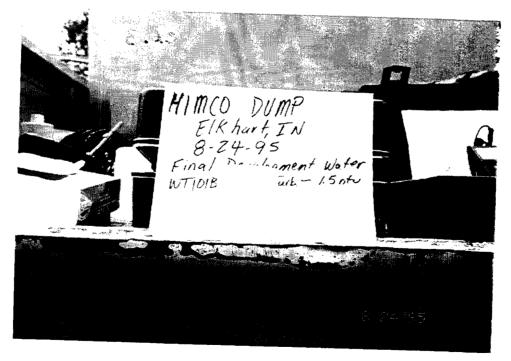

Exposure No. 27: Closeup of piping in the basement of the Residence which is connected to residential well RW-06. Note the newer piping which now conveys city water to the residence.

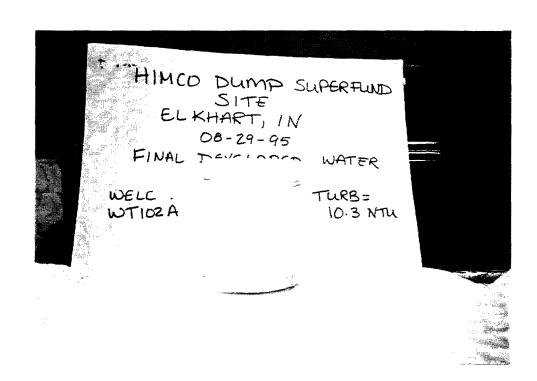
Exposure No. 28: Closeup of pump and piping which is connected to residential well RW-07 (Property). Note that the discharge end of the pump has been disconnected.

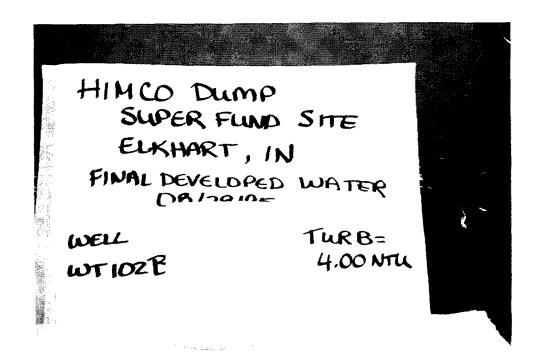

Exposure No. 29: Closeup of residential well RW-08 (Property).


Exposure No. 30: Closeup of residential well RW-09 (Property, formerly owned by

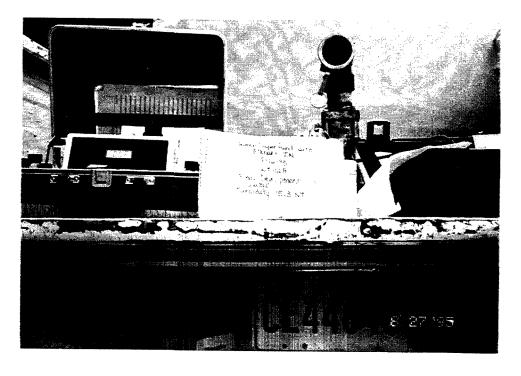

Exposure No. 31: Closeup of residential well RW-10 (Property).

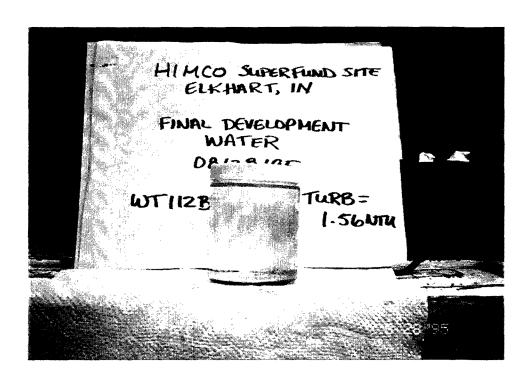

Exposure No. 32: Monitoring well WTE1 final redevelopment water sample.

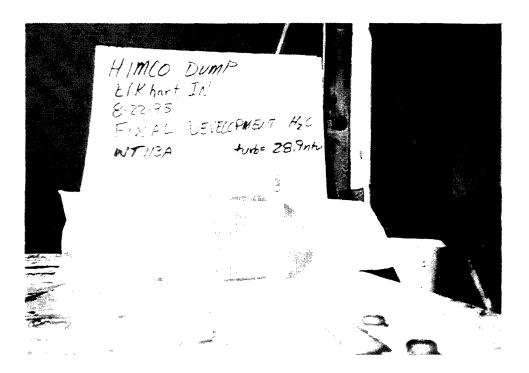

Exposure No. 33: Monitoring well WTO1 final redevelopment water sample.

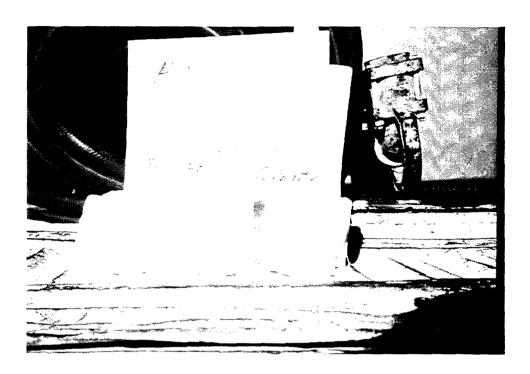

Exposure No. 34: Monitoring well WT101A final redevelopment water sample.

Exposure No. 35: Monitoring well WT101B final redevlopment water sample.


Exposure No. 36: Monitoring well WT102A final redevelopment water sample.

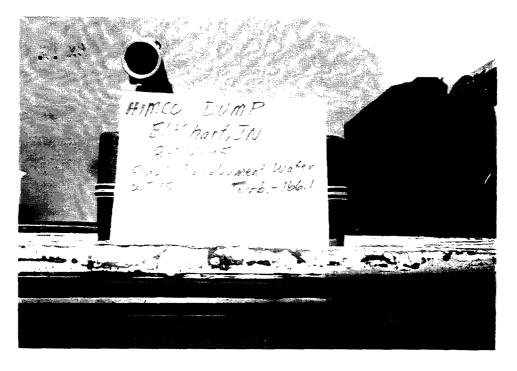

Exposure No. 37: Monitoring well WT102B final redevelopment water sample.

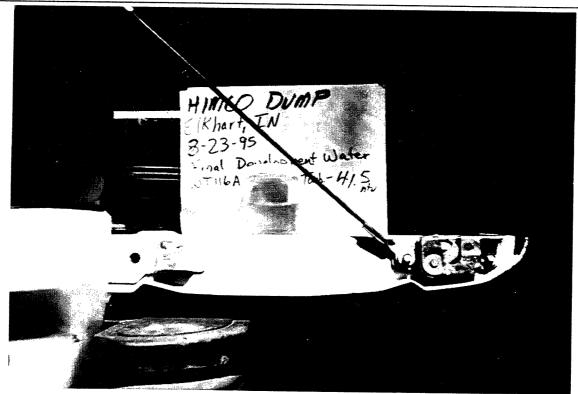

Exposure No. 38: Monitoring well WT111A (mislabelled WT118A) final redevelopment water sample.

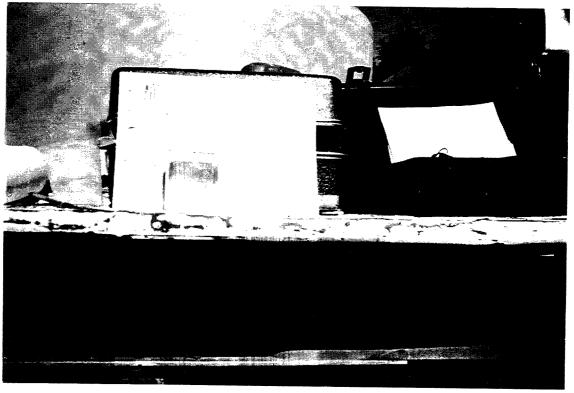

Exposure No. 39: Monitoring well WT112A final development water sample.

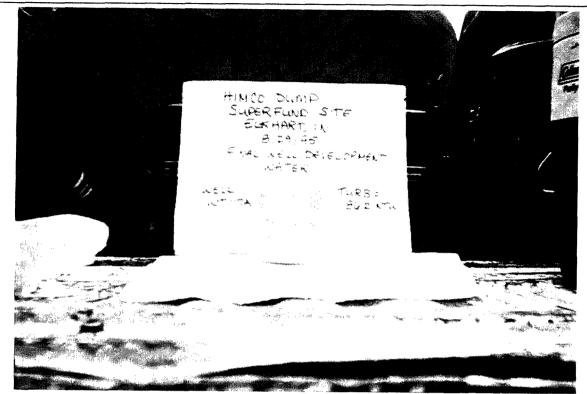
Exposure No. 40: Monitoring well WT112B final development water sample.

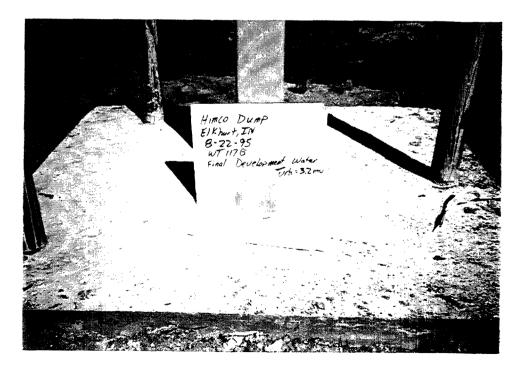
Exposure No. 41: Monitoring well WT113A final development water sample.


Exposure No. 42: Monitoring well WT113B final development water sample.


Exposure No. 43: Monitoring well WT114A final development water sample.


Exposure No. 44: Monitoring well WT114B final development water sample.


Exposure No. 45: Monitoring well WT115A final development water sample.


Exposure No. 46: Monitoring well WT116A final development water sample.

Exposure No. 47: Monitoring well WT116B final development water sample.

Exposure No. 48: Monitoring well WT117A final development water sample.

Exposure No. 49: Monitoring well WT117B final development water sample.

Exposure No. 50: Monitoring well WT118B final development water sample.

APPENDIX B: MONITORING WELL BORING LOGS

TABLE OF CONTENTS

Boring/Well No.	Boring/Well No.	Boring/Well No.
WT112A	WT114A	WT116B
WT112B	WT114B	WT117A
WT113A	WT115A	WT117B
WT113B	WT116A	WT118B

				HTW [DRILL	ING L	_0G			***	···	l l	NO. 112A
	IY NAME	ORPS OF	ENGINEED		[2	P. DRILLING	SUBCONT	RACTOR				SHEE	
3. PROJEC	ci -					N/A	4. LOCA	ATION				OF	3 SHEETS
	O DUMP	SUPERFL	IND SITE					KHART, IN.	FEIGL	LATION OF POIL			
JOE	MORRISS					6. MANUFACTURER'S DESIGNATION OF DRILL GUS PECH 1100C							
SIZES A	ND TYPES C AMPLING EQU	F DRILLING JIPMENT		HSA; 2" O.D. SPLIT SPOO			8. HOL	ELOCATION					
				BY A 140 F			9. SUR	FACE ELEVATION	N				
				T; HNU PIIOI	PID; ISTI	ИX	10 017	E STARTED			II. DATE CO	JOI ETEN	
			410 CGI.				ŀ	23-95			8-23-		
	URDEN THICH	(NESS					15. DEP 9.5	TH GROUNDWAT	ER EI	NCOUNTERED	<u> </u>	·	
	DRILLED , 194	TO ROCK						1	AND	ELAPSED TIME	AFTER DRILLIN	COMPLE	TED
N/A								24-95 9 : 5					
16.0	DEPTH OF	HOLE					17. OTH	ER WATER LEV	EL M	EASUREMENTS (SPECIFY)		
. GEOTE	CHNICAL SAN	IPLES		DISTURBED	U	NDISTURBED	1:	9. TOTAL NUM	BER 0	F CORE BOXES			
20. SAMP	ES FOR CH	EMICAL ANALY	SIS	voc	METALS OTHER			(SPECIFY)	01	HER (SPECIFY)	OTHER (SPECIEY)	21. TOTAL CO
					mc / A		OTHER	CST ECH 17	"	TIEN (SI COI 17	- Villac C	31 CCII 17	RECOVERY
2. DISPO	SITION OF H	HOLE BACKFILLED MONITOR			MONITORIN	IG WELL	OTHER	(SPECIFY)	23.	SIGNATURE OF	INSPECTOR		
				101111220	2" P		- OTHER	tor con tr		MICHELLE			
						FIELD SC	REENING	GEOTECH SAM	PI F	ANALYTICAL	BLOW	I	
ELEV.	DEPTH b.	TH DESCRIPTION OF MATERIALS RESULTS OR CORE BOX NO. SAMPLE NO. COL		COUNTS	1	REMARKS h.							
	0					BACKGF HNU =	<u>ช่อที่มอ</u>					ļ	
						UNITS 02 = 2							
						LEL =	0%						
	-									į			
									-				
1	! ∃								1		!		
	2 —												
	=					İ						•	
	_												
	3 —												
	\exists												
		POORLY (GRADED S	SAND (SP):		BREATI	IING			-			
-	_	MEDIUM D	ENSE, MC	DIST. TAN. M OUTWASH	EDIUM	ZONE HNU =	3.3				4		l = 12
į	4 —	DEPOSITS.		,		UNITS 0 2 = 2				-		l R	EC. = 1.5'
	\exists					LEL =	0%				5		
						1	1		- 1	1	1		
											7		
	5		PROJECT					·····			7 HOLE NO		

DO F0-		HTW DRILL					HOLE NO. WTIIZA	
ROJECT IIMCO	DUMP SUPE	RFUND SITE	INSPECTOR MICHELLE BEN	·-·	SHEET 2 OF 3 SHEETS			
ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS c.	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS h.	
	l ⊒(GW)	L GRADED GRAVEL WITH SAND: MEDIUM DENSE, MOIST, TAN, MEDIUM TO COARSE SAND, WASH DEPOSITS.	BREATHING ZONE HNU = 3.0 UNITS 0 2 = 20.9% LEL = 0%			7	N = 16 REC. = 1.4' 10:07 AM WATER @ 9.5'	
		_ GRADED SAND WITH GRAVEL WET, BROWN, 15%-20% GRAVEL, WASH DEPOSITS.	BREATHING ZONE HNU = 3.0 UNITS O 2 = 20.9% LEL = 0%	D-I		13	N = 127 REC. = 1.5′	

		HTW DRILL	ING LOG				HOLE NO. WTIIZA
PROJECT	DUILED COST		INSPECTOR MICHELLE BEN	۸K		•	SHEET 3
німсо	DUMP SUF	PERFUND SITE		GEOTECH SAMPLE	ANALYTICAL	BLOW	OF 3 SHEETS
ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS c.	RESULTS d.	OR CORE BOX NO	SAMPLE NO.	COUNTS Q.	REMARKS h.
	15		D-I			60	PLIT SPOON SAMPLER WAS FULL, POSSIBLY CAUSING RTIFICIALLY HIGH BLOW COUNTS.
	16	BOTTOM OF HOLE @ 16.0'		i			
	17 —						
		4					
							ļ
				,			
							-
	\exists						-
	=						-
	=						F
							ļ
							-
	=						<u></u>
			-				F
	\exists						-
		PROJECT HIMCO DUMP SUPERFUN					

OMPANY NAME I.S. ARMY CORPS OF ER PROJECT	NGINEERS	٦,							j	12B	
			DRILLING N/A	SUBCONT	RACTOR		<u></u>		SHEET		
WASS BUILD CUREBELLY			10/ A	4. LOCA					OF 7	SHEETS	
HIMCO DUMP SUPERFUN	D SITE				HART, IN.	ESIGN	ATION OF DRILL				
JOE MORRISSEY				GUS PECH 1100C							
NNU SAMPLING EUUIFMENI 🗀	1/4" I.D. HSA: 2" O.D. TEEL SPLIT SPOOM		D	8. HOLE	LOCATION						
	RIVEN BY A 140 P			9. SURF	ACE ELEVATIO	N	·····				
L-n-	OR SPT; HNU PHOI	PID; ISTM		IO DAT	STARTED			II. DATE COM	PI F TFD		
<u>_</u>	₹			8-2	23-95			8-23-9			
OVERBURDEN THICKNESS JNKNOWN					TH GROUNDWATE LOG OF						
DEPTH DRILLED INTO ROCK							ELAPSED TIME A	FTER DRILLING	COMPLET	ED	
N/A FOTAL DEPTH OF HOLE					24-95 9:58		8.8' EASUREMENTS (S	PECIEVI			
59.3′					IN WATER CEN						
SEOTECHNICAL SAMPLES	DISTURBED	UNO	DIS TURBED	19	. TOTAL NUMB	SER OF	F CORE BOXES	·- ·			
SAMPLES FOR CHEMICAL ANALYSI	s voc	METAL	s	OTHER	(SPECIFY)	от	HER (SPECIFY)	OTHER (S	PECIFY)	21. TOTAL CORE	
										RECOVERY %	
DISPOSITION OF HOLE	BACKFILLED	MONITORING	WELL	OTHER	(SPECIFY)	23.	SIGNATURE OF	NSPECTOR		<u> </u>	
		2* PV	/C				MICHELLE	BENAK			
LEV. DEPTH DI	FIELD SCF RESL	JLTS	GEOTECH SAME OR CORE BOX		ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	R	EMARKS h.			
│ ⊢A DESCRIP	OF BORING FOR WITTION OF MATERIAL OW GROUND SURFA	S DOWN	HNU = UNITS 02 = 2 LEL =	2 . 8					AND OB FIRST S	AMPLE 3.5'-20.0' ERY 5'	
5 =	PROJECT							HOLE NO.			

DJECT	DIMP CUES	HTW DRILL	ING LOG	ΔΚ			HOLE NO. WTII2B	-
ELEV.	DUMP SUPER	DESCRIPTION OF MATERIALS	FIELD SCREENING	GEOTECH SAMPLE OR CORE BOX NO	ANALYTICAL SAMPLE NO.	BLOW COUNTS	OF 7 SHEETS REMARKS	
a.	b	c.	d.	е.	f.	g.	h,	_
								F
				}		İ		F
								E
	6							F
			1					F
i	7	*						
			1					E
			}	,				
	7							
{	=							F
	$\overline{}$							E
	=							
İ	8							
	\exists							
}		•						
								<u> </u>
								F
	9 —		}					
ļ								
l						}		F
	=					Ì		F
1	ю —							E
- 1					Ì	1		
			ł			}		上
					1	}		F
	_ =							E
	" =				{			E
	=				Ì			F
1							•	E
1	\exists							
	12 —				{			
	7							F
								E
}	\exists				1			E
	13 —					ł		
	=			1				F
				Ì	Ì			E
					}			E
	=							F
	14							-
	\exists			1				E
		PROJECT HIMCO DUMP SUPERFUN	_			HOLE NO WTII2B		ــــــــــــــــــــــــــــــــــــــ

HIW DIVILL	ING LOG				HOLE NO. WTII2B	
DUMP SUPERFUND SITE	MICHELLE BEN			OF 7 SHEETS		
DEPTH DESCRIPTION OF MATERIALS b. c.	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS h₀	
WELL GRADED GRAVEL (GW): WET, BROWN TO LIGHT BROWN, FINE TO COARSE GRAVEL, OUTWASH DEPOSI POORLY GRADED SAND WITH APPROXIMATELY 10% GRAVEL, OUTWASH DEPOSITS. WELL GRADED GRAVEL (GW): SAME AS THE INTERVAL FROM 18.5'-18.9' EXCEPT WALL GRADED GRAVEL (GW): SAME THE INTERVAL FROM 18.5'-18.9' TEXT OF THE INTERVAL FROM 18.5'-18.9' THE TO I'/2' IN DIAMETER. PROJECT HIMCO DUMP SUPERFUN	O2 = 20.9% LEL = 0%			4 10 17 6	N = 27 REC. = 1.5'	

)JECT		HTW DRIL	LING LOG	···			HOLE NO. WTI12B
	DUMP SI	JPERFUND SITE	MICHELLE BEN	IAK			OF 7 SHEETS
LEV.	DEPTH b.	DESCRIPTION OF MATERIALS c.	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS 9.	REMARKS h.
		POORLY CRADED SAND WITH GR (SP): MEDIUM DENSE, WET, MEDIU GRAINED SAND, 20%-25% GRAVE OUTWASH DEPOSITS.	m IZONE			9	N = 19 REC. = 0.8'
		OUTWASH DEFUSITS.	0 ₂ = 20.9% LEL = 0%		,	10	NEC 0.0
	25 —	*					
				,			
	26 —						
	27 —	N.					
	28 —						
			AVEL BREATHING				
	-\(\frac{1}{2}\)	POORLY GRADED SAND WITH GR SP):SAME AS THE INTERVAL FF 23.9'-25.0'EXCEPT DENSE,20% GRAVEL.	ROM ZONE HNU = 3.2 UNITS			5	N = 36 REC. = 1.5′
			0 ₂ = 20.9% LEL = 0%			12	11.00
	30 —					24	
	31 —						
	32						
	33 —						
		PROJECT HIMCO DUMP SUPERFI					

		HTW DRILLIN	G LOG				HOLE NO. WTII2B	
PROJ HIM			MICHELLE BEN	IAK			SHEET 5 OF 7 SHEETS	
	EV. DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS	
		POORLY GRADED SAND WITH GRAVEL (SP): SAME AS THE INTERVAL FROM 23.9'-25.0'.	ZONE HNU = 3.0			6	N = 26	
	34		UNITS 0 ₂ = 20.9% LEL = 0%			12	REC. = 1.2'	
	35	ł.				14		
	35 ——	,		,		 -		
	36 —							
		4						
	37 —							
	38							
		(SP): SAME AS THE INTERVAL FROM 23.9'-25.0' EXCEPT BROWN, 35%-40%	BREATHING ZONE HNU = 3.4 UNITS			35	N = 29 REC. = 0.4'	
	39 —	GRAVEL UP TO 11/2°IN DIAMETER.	0 ₂ = 20.9% LEL = 0%			16	NEO! OF	
						13		
	40							
	41 —							
	42							
	43						!	
L	13	PROJECT HIMCO DUMP SUPÉRFUND S				HOLE I	NO. 2B	L

ROJECT		HTW DRILLI	NG LOG	•••••			HOLE NO. WTII2B	
	DUMP SUI	PERFUND SITE	MICHELLE BEN	AK			OF 7 SHEETS	
ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS C.	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS h.	
		POORLY GRADED SAND WITH GRAVESP): SAME AS THE INTERAL FROM 23.9'-25.0' EXCEPT GRAVEL UP TO 1/2' IN DIAMETER.	ZONE	,		2l l6	N = 23 REC. = 1.2′	
	47	•	BREATHING ZONE HNU = 3.0 UNITS O 2 = 20.9%			15	N = 52 REC. = 1.2'	
	50 ————————————————————————————————————	OORLY GRADED SAND (SP): VERY NSE, WET, BROWN, FINE SAND, ITWASH DEPOSITS.	LEL = 0%			36		
		PROJECT HIMCO DUMP SUPERFUND				HOLE NO WTII2B		ŀ

ROJECT	•	HTW DRILLIN	ISPECTOR				HOLE NO. WTI12B SHEET 7
IMCO	DUMP S	UPERFUND SITE	MICHELLE BEN	AK			OF 7 SHEETS
a. ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS h.
- Toronto	53 —						
	54 —	POORLY GRADED SAND (SP): SAME AS THE INTERVAL FROM 49.2'-50.0'.	BREATHING ZONE HNU = 3.2 UNITS O ₂ = 20.9%			13	N = 62 REC. = 1.5'
		POORLY GRADED SAND WITH GRAVEL (SP): VERY DENSE, WET, 25%-30% GRAVEL UP TO 11/2 IN DIAMETER, OUTWASH DEPOSITS.		,		23	
	55					39	
	56 —	•					
	57						
	58 —						
		POORLY GRADED SAND (SP): VERY DENSE, WET, OUTWASH DEPOSITS.	BREATHING ZONE HNU = 2.8 UNITS O 2 = 20.9%	D-I		II	N = 89 (ONE 6" INTERVAL ONLY) REC. = 0.8'
	"		0 ₂ = 20.9% LEL = 0%			89	
6	60	BOTTOM OF HOLE & 59.3'					CLEANED HOLE OUT WITH AUGERS TO 60.0', THEN SET MONITORING WELL IN BORING.
		PROJECT HIMCO DUMP SUPERFUND S				HOLE I	

			HTW	DRILLI	NG L	OG					WTI		
. COMPANY NAME U.S. ARMY CO	ORPS OF F	NGINEER	 !S	2.	DRILLING	SUBCONT	RACTOR				SHEET		
. PROJECT					147 M	4. LOCA	TION				OF	SHEETS	
HIMCO DUMP		ND SITE					HART, IN.	CCIO:	11011 05 55"				
JOE MORRISS						6. MANUFACTURER'S DESIGNATION OF DRILL GUS PECH 1100C							
SIZES AND TYPES I	OF DRILLING UIPMENT		HSA; 2" O.D			8. HOLE LOCATION							
	Ľ.		PLIT SPOO BY A 140 F			9. SURI	ACE ELEVATIO	N					
		FOR SPI	F; HNU PIIO							r . 111			
	. [410 CGI.					E STARTED 0-95			8-10-9			
2. OVERBURDEN THIC	KNESS						TH GROUNDWAT	ER EN	COUNTERED				
3. DEPTH DRILLED IN	ITO ROCK	 				16.5	_	AND E	LAPSED TIME A	FTER DRILLI	NG COMPLETE	<u>.</u> D	
N/A						8-1	I-95 2 : 30	РМ	15.75′				
4. TOTAL DEPTH OF 23.7'	HOLE					17. OTH	ER WATER LEV	EL ME	ASUREMENTS (S	SPECIFY)			
3. GEOTECHNICAL SA	MPLES		DISTURBED	UN	DISTURBED	19	. TOTAL NUME	BER OF	CORE BOXES	· · · · ·			
O. SAMPLES FOR CH	IEMICAL ANALYS	SIS	VOC	l veta	. 1	07:150	(CDEC/EV)	AT.	HER (SPECIFY)	ATUED	(SPECIFY)	21. TOTAL CORE	
O. SAMPLES FOR U	ILMICAL ANALT		¥00	METAL		OTHER	(SPECIFY)	011	TER ISPECIFI)	OTHER	(SPECIFI)	RECOVERY	
2. DISPOSITION OF H	HOLE		ACKFILLED	MONITORING	WELL	OTHER (SPECIFY) 23. SIGNATURE OF INSPECTOR					2		
		1 64	CONT PLLED	2* P\		JINER	OF EUR 17		MICHELLE				
	1		· · · · · · · · · · · · · · · · · · ·			PEENING	GEOTECH SAM	PLE	ANALYTICAL	BLOW	-T		
ELEV. DEPTH	EV. DEPTH DESCRIPTION OF MATERIALS RE						OR CORE BOX		SAMPLE NO.	COUNTS 9.	R	EMARKS h.	
0 -			NG FOR WI									O TO 23.7'	
=	A DESCRIF	PTION OF	MATERIAL		HNU = UNITS						AND SE	T A RING WELL	
_]	*			0 ₂ = 2 LEL =						IN THE		
5 —	Ì				BREATH ZONE	ling							
					HNU = UNITS	0.0							
					0 ₂ = 2 LEL =								
					-	٥,٠		-					
10 —													
											-		
								ĺ					
								ŀ					
15											WATER	o 10 5/	
∇					BREATH	IING					WATER	@ 16.5′	
					ZONE HNU =	2.0							
	,				UNITS 02 = 2	1.0%							
20 —					LEL =			f					
	ВОТ	TOM OF	HOLE @ 2	3.7′									
						i		-	ł				
25											1		

			HTW	DRILLI	NG LOC	· ·			HOLE W TI		
I. COMPAN U.S. A		RPS OF ENG	NEERS		DRILLING SUBCO	NTRACTOR			SHEET	i	
3. PROJEC	:T				4. LC	CATION		0F 8	SHEETS		
	OF DRILLER	SUPERFUND				ELKHART, IN.					
	MORRISS	EY				JS PECH IIC					
7.SIZES AN AND SA	ND TYPES O	F DRILLING 61/4"	I.D. HSA; 6* O.D. PLER TO 23.5',	CME CONT	CHED 8. H	DLE LOCATION					
			O.D. CARBON			JRFACE ELEVATION	N				
			N SAMPLER DRI			ATE STARTED		N. DATE CO	WARLETED		
			D HAMMER FOR PID: ISTMX 410			-9-95		8-10-9			
2. OVERBU	URDEN THICK				i	PTH GROUNDWAT	ER ENCOUNTERED		.		
	DRILLER HIL	TO ROCK					AND ELAPSED TH	WE AFTER DRILLI	NG COMPLET	ED	
N/A		<u>-</u>			8	-10-95 8:03	3 AM 16.3'.	8-11-95 2:15	PM 16.0)′	
1. TOTAL 70.0'	DEPTH OF	HOLE			17. 0	THER WATER LEV	VEL MEASUREMENT	S (SPECIFY)			
	CHNICAL SAN	APLES .	DISTURBED	UND	NS TURBED	19. TOTAL NUM	BER OF CORE BOX	KES			
30 644-0-	EC 500 0	EMICAL AND YOU	1		, 		AT	- T	.c.nec.:::	la. 70711	
CO. SAMPL	-E3 FUR €H	EMICAL ANALYSIS	voc	METALS	S 01H	ER (SPECIFY)	OTHER (SPECIF	OTHER	(SPECIFY)	21. TOTAL CORE RECOVERY	
o Dichoo	SITION OF H	OLE		10000000	wei		27 (1011) 71.07	OF HICEGORIA		Х	
.z. vistus	MITTER TO THE	VLC	BACKFILLED	MONITORING		ER (SPECIFY)	23. SIGNATURE	OF INSPECTOR _E BENAK			
	1			2" PV			<u> </u>		1		
ELEV.	DEPTH b.	DESC	RIPTION OF MATERIALS		FIELD SCREENIN RESULTS d.	OR CORE BOX			R	EMARKS	
	-	POORLY GRAI LIGHT BROWN OUTWASH DEI	DED SAND (SP): I, FINE TO MEDIL POSITS.	MOIST, JM SAND,	UNITS 0 2 = 20.9% LEL = 0% BREATHING ZONE HNU = 0.0 UNITS 0 2 = 20.9% LEL = 0%				START STOP S REC. =	0: 48	
	3										
	4 —										
			DJECT MCO DUMP SUPE	ERFUND SI	ΤΕ			HOLE N			

MORECUTE BOARD SUPERFUND SITE SOFTEND	 	HTW DRILLIN					HOLE NO. WTII3B	
County C	DUMP S	1.		AK				
PORTLY GRADED SAND (SP)-SAME REATHING ZSTART 9,552 STOP 9956 UNITS OF 10 10% GRAVEL. BREATHING ZONE SAND AND HALL SONE SAND AND HALL SONE STOP 9956 UNITS OF 2 20,0% LEL = 0% BREATHING ZONE HALL SONE SAND AND HALL SONE STOP 1005 STOP 1	1		RESULTS	OR CORE BOX NO	SAMPLE NO.	COUNTS	REMARKS	
I4' BELOW GROUND	8	POORLY GRADED SAND (SP): SAME AS THE INTERVAL FROM 0.5'-5.0' EXCEPT FINE TO COARSE SAND AND UP TO IO% GRAVEL. WELL GRADED GRAVEL WITH SAND GW): LIGHT BROWN, 65%-70% FINE TO COARSE GRAVEL, 30%-35% FINE TO	BREATHING ZONE HNU = 0.2 UNITS 02 = 21.0% LEL = 0% BREATHING ZONE HNU = 0.9 UNITS 02 = 20.9%	G.	f.		RUN #2 START 9:52 STOP 9:56 REC. = 3.7'	
	14 —						14' BELOW GROUND SURFACE AT THE	

		HTW DRILLI					HOLE NO. W TII3B	
PROJECT HIMCO I	DUMP SUPE	RFUND SITE	INSPECTOR MICHELLE BEN	AK			SHEET 3 OF 8 SHEETS	
ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS C.	-1	GEOTECH SAMPLE OR CORE BOX NO	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS 9-	REMARKS	
	¦ — ⟨G₩	LL GRADED GRAVEL WITH SAND): SAME AS THE INTERVAL FROM)'-15.0'.	BREATHING ZONE HNU = 0.2 UNITS O ₂ = 20.9% LEL = 0%	,			RUN #4 START 10:12 STOP 10:16	
∇	17 —						WATER € 16.8'	
	18 —	``	BREATHING ZONE HNU = 0.7 UNITS O ₂ = 21.0% LEL = 0%				MEASURED HOLE & 17.5' BELOW GROUND SURFACE AT THE END OF RUNWAY.	
í	20		BREATHING ZONE HNU = 0.4 UNITS				RUN #5	
	22		0 ₂ = 20.9% LEL = 0%					
2	23 ————————————————————————————————————	L GRADED GRAVEL WITH SAND				40		
	(GW)	: SAME AS THE INTERVAL FROM		Ì		40		

		HTW DRILLIN					HOLE NO. W TII 3B
MCO	DUMP SUPE	ERFUND SITE	NSPECTOR MICHELLE BEN	AK			SHEET 4 OF 8 SHEETS
FLEV.	DEPTH b.	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS G.	REMARKS h.
						36	N = 139 REC. = 1.5′
	25 —			,			AUTOMATIC HAMMER APPARENTLY MELFUNCTIONED, PRODUCING ARTIFICIALLY HIGH BLOW COUNTS.
	J(SP	DRLY GRADED SAND WITH GRAVEL): MEDIUM DENSE, WET, BROWN, GRAVEL, OUTWASH DEPOSITS.	BREATHING ZONE HNU = 0.7 UNITS O 2 = 21.0% LEL = 0%			5 7 II	N = 18 REC. = 1.3'
	32	PROJECT HIMCO DUMP SUPERFUND S	,			HOLE N	

JECT		HTW DRILLIN	G LOG				HOLE NO. WTII3B
	DUMP S		VICHELLE BEN	AK		·	OF 8 SHEETS
.ΕV.	DEPTH b.	DESCRIPTION OF MATERIALS c.	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS 9-	REMARKS
••		POORLY GRADED SAND WITH GRAVEL (SP): SAME AS THE INTERVAL FROM 28.5'-30.0' EXCEPT LOOSE.	BREATHING ZONE HNU = 1.4			ŀ	N = 4
	34 —		UNITS 0 ₂ = 20.9% LEL = 0%			ı	REC. = 0.5'
						3	
	35	ŧ					
				i			
	36 —						
	37 —						
	38 —						
		WELL GRADED SAND (SW):LOOSE,WET DARK TO LIGHT BROWN,5% GRAVEL, OUTWASH DEPOSITS.	HNU = 1.4			1	N = 5
	39 —		UNITS 0 ₂ = 20.9% LEL = 0%				REC. = 1.4'
					-	4	
	40 ====================================				ŀ		
	=						•
	41						
	42						
	43						
	7.7	PROJECT HIMCO DUMP SUPERFUND S				HOLE NO WTII3E	

		HTW DRILLIN					HOLE NO. WTII3B	
PROJECT HIMCO	DUMP SUF		NSPECTOR MICHELLE BEN	AK			SHEET 6 OF 8 SHEETS	
ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS C.	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS h.	
	(G Bf GF	ELL GRADED GRAVEL WITH SAND W): VERY DENSE, BROWN TO LIGHT ROWN, 80% FINE TO COARSE RAVEL, 20% FINE TO COARSE SAND, JTWASH DEPOSITS.	BREATHING ZONE HNU = 1.4 UNITS O 2 = 20.9% LEL = 0%	,		9 20 50	N = 70 REC. = 1.5'	
	46 —	•					45.6' B.O.H.	
	l —∤GV	2'-45.0' EXCEPT MEDIUM DENSE.	BREATHING ZONE HNU = I.I UNITS O 2 = 20.9% LEL = 0%			7	N = 25 REC. = 0.9'	
	52	PROJECT HIMCO DUMP SUPERFUND				HOLE A		

MINCO DUMP SUPERFUND SITE	PROJECT		HTW DRILLIN	NSPECTOR				HOLE NO. WTII3B	
REVANS State Property Ceared Sand Swith Saturated See athing Dense, outwash Deposits Dense, outwash Dense, outwash Dense, outwash Dense, outwash Dense, outwash Dense, outwash Dense, outwash Dense, outwash Dense, outwash Dense, outwash Dense, outwash Dense, outwash Dense, outwash Dense, outwash Dense, outwash Dense, ou	HIMCO	DUMP SUI	PERFUND SITE	MICHELLE BEN	, 	ANAL YTICAL	BI OW	1	_
### MELL GRADED SAND (SW): SATURATED BREATHING ZONE 13 S4				RESULTS	OR CORE BOX NO	SAMPLE NO.	COUNTS		
DENSE, OUTWASH DEPOSITS. 13		53 —							
02 = 20.9% LEL = 0% 28 21 55 — 56 — 58 — POORLY CRADED SAND ISPH MEDIUM DENSE WET, OREY TO BROWN, 5% ORAVEL, OUTWASH DEPOSITS. S9 — 60 — 61 — 61 — 61 — 10 —			ENSE, OUTWASH DEPOSITS.	ZONE HNU = 0.8			13	N = 49 REC. = 0.8'	
55 —		54 —		0 ₂ = 20.9%			28		
58 — — — — — — — — — — — — — — — — — — —		55					21		
PROJECT HOLE NO. HIMCO DUMP SUPERFUND SITE WTII3B:		56 —	DORLY GRADED SAND (SP): MEDIUM ENSE, WET, GREY TO BROWN, 5% RAVEL, OUTWASH DEPOSITS.	ZONE HNU = 0.4 UNITS 0 2 = 20.9% LEL = 0%			2 10	REC. = 1.5'	

MICO DUMP SUPERFUND SITE MICHELLE BENAX FED. SEEMS COUNTS SAME MICHELLE BENAX M			HTW DRILLIN					HOLE NO. WTII3B	
REAL PROPERTY DESCRIPTION OF MATERIALS PRED SCRIEBMON GOTTON SAME, NO. COURTS COU	ROJECT IMCO [DUMP S		INSPECTOR MICHELLE BEN	AK			SHEET 8 OF 8 SHEETS	
### POORLY CRADED SAND (SP): SAME AS THE INTERVAL FROM 58.5'-60.0' EXCEPT LOOSE. A	- 1			RESULTS	OR CORE BOX NO	SAMPLE NO.	COUNTS	REMARKS	
BREATHING ZONE HNU = 2.1 UNITS 0 2 = 20.9%. LEL = 0% BOTTOM OF HOLE © 70.0' BOTTOM OF HOLE MEASURED AT 67.8' BELOW CROUND		65 —	POORLY GRADED SAND (SP): SAME AS THE INTERVAL FROM 58.5'-60.0' EXCEPT LOOSE.	ZONE HNU = 0.4 UNITS 102 = 20.9%	D-I		2		
71 — SPOON SAMPLER.	6	70 —	BOTTOM OF HOLE @ 70.0'	ZONE HNU = 2.1 UNITS O 2 = 20.9%			3 2	REC.≈ O	

				HTW	DRILL	ING L	.0G					HOLE WT	
I. COMPANY N		RPS OF	ENGIN	EERS	2	DRILLING	SUBCONT	RACTOR			<u> </u>	SHEE	
3. PROJECT						117 /	4. LOC					OF 3	SHEETS
5. NAME OF		SUPERFL						(HART, IN.	ESIG	NATION OF DRILL			
JOE MC	ORRISSE							S PECH IIO					
7.SIZES AND AND SAMP	TYPES OF LING EQUI	DRILLING PMENT	STEE	I.D. HSA; 2" O.D L SPLIT SPOO	N SAMPL			E LOCATION					
				EN BY A 140 F SPT; HNU PIIO			9. SUR	FACE ELEVATION	N				
			410 0					E STARTED			II. DATE COM 8-21-95		
2. OVERBURD		NESS	<u> </u>				15. DEP	TH GROUNDWAT	ER E	NCOUNTERED			
UNKNOV 3. DEPTH DR		O ROCK					16. DEP		AND	ELAPSED TIME A	FTER DRILLING	COMPLET	ED
N/A	PTU AE H	01.5						22-95 7:			2505		
23.0′	. I III OF II	ole					17. UIH	ER WATER LEV	EL M	EASUREMENTS (S	PECIFY)		
8. GEOTECHNI	ICAL SAMF	PLES		DISTURBED 	UN	IDISTURBED		9. TOTAL NUME	BER (OF CORE BOXES			
20. SAMPLES	FOR CHE	MICAL ANALY	rsis	VOC	META	LS	OTHER	(SPECIFY)	01	THER (SPECIFY)	OTHER (S	PECIFY)	21. TOTAL COR RECOVERY
		. <u>.</u>											×
22. DISPOSITIO	ON OF HO	LE	1	BACKFILLEO	MONITORIN		OTHER	(SPECIFY)	23.	SIGNATURE OF	_		
					2" P	1		T		MICHELLE			
ELEV. (DEPTH b.		DESCRIF	PTION OF MATERIALS		FIELD SCF RESI	JLTS	GEOTECH SAM OR CORE BOX e.		ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	F	REMARKS
3	4 — MS	OIST, TA	N, MEI	D SAND (SP): DIUM TO COAF 1 DEPOSITS.	LOOSE PSE	HNU = UNITS O 2 = 2 LEL = UNITS O 2 = 2 LEL =	0.9% 0%				3 3 3	• N RE	= 6 EC. = 1.3'
			PROJE	ECT CO DUMP SUPI	EDELIND C	· · · · · · · · · · · · · · · · · · ·					HOLE NO.		

ROJECT		HTW DR	LLING LOG				HOLE NO. WTII4A	
		SUPERFUND SITE	MICHELLE BEN	IAK			OF 3 SHEETS	
ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS C.	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	RÉMARKS h.	
		POORLY GRADED SAND (SP): S AS THE INTERVAL FROM 3.5'- EXCEPT RUST COLOR, COARSE SAND.	5.0' LUNE	ì		3 4 5	N = 9 REC. = 1.4'	
	14	POORLY GRADED SAND (SP): S AS THE INTERVAL FROM 3.5'- EXCEPT LIGHT BROWN, COARSI SAND.	5.0' ZONE			3	N = 7 REC. = 1.5′	

PROJECT		HTW DRILLIN	SPECTOR				HOLE NO. WTII4A SHEET 3
	DUMP SUPE	ERFUND SITE M	IICHELLE BEN			T	OF 3 SHEETS
ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS C.	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS Q.	REMARKS h.
∇	15 — 16 — 17 — 18 — POC — AS — EXC						,
	20	BOTTOM OF HOLE @ 23.0'		D-I		8	
	24	PROJECT HIMCO DUMP SUPERFUND S				HOLE	NO

				HTW	DRILLI	ING L	OG					HOLE	
COMPAN		RPS OF	ENG	MEEDS	2	• DRILLING	SUBCONT	TRACTOR				SHEE	
3. PROJEC	Ť -				l .	N/A	4. LOC	A TION				OF_E	3 SHEETS
	DUMP OF DRILLER	SUPERF	UND	SITE				CHART, IN.	FSIGN	NATION OF DRILL			
JOE 1	MORRISS						l	S PECH IIO					
SIZES AN AND SA	ID TYPES O MPLING EOL	F DRILLING JIPMENT	61/4"	I.D. HSA; 2' O.D. L SPLIT SPOON	CARBON	0	8. HOL	E LOCATION				-	
				EN BY A 140 P			9. SUR	FACE ELEVATIO	N				
				SPT; HNU PIIOI P	PID;		IO DAT	E STARTED			II. DATE CON	API FTFD	
			12 I M	X 410 CGI.				22-95			8-22-9		
OVERBU	JRDEN THICK	(NESS						TH GROUNDWAT E LOG OF					
. DEPTH	DRILLED IN	TO ROCK					IG. DEP	TH TO WATER	AND	ELAPSED TIME AF	TER DRILLIN	G COMPLET	ED
N/A	DEPTH OF	HOLE						23-95 9:0		M 15.2'	near.		·
66.0		HOLL				1	II. UIH	ER WATER LEV	EL M	EASUREMENTS (SI	PECIF 1)		
. GEOTEC	HNICAL SAN	IPLES		DISTURBED	10	IDISTURBED	ı	9. TOTAL NUME	BER C	OF CORE BOXES			
O. SAMPL	ES FOR CH	EMICAL ANA	LYSIS	voc	META	LS	OTHER	(SPECIFY)	01	THER (SPECIFY)	OTHER (S	SPECIFY)	21. TOTAL CORE
					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						 		RECOVERY %
2. DISPOS	DISPOSITION OF HOLE , BACKFILLED MONIT					G WELL	OTHER	(SPECIFY)	23.	SIGNATURE OF I	NSPECTOR		
					2" P	vc				MICHELLE E	BENAK		
					1			GEOTECH SAM		ANALYTICAL	BLOW		
ELEV.	DEPTH b₁		DESC	RIPTION OF MATERIALS		d		OR CORE BOX	NO.	SAMPLE NO.	COUNTS 9-	'	REMARKS h.
				BORING FOR W		BACKGF HNU =						AUGERE AND OB	D TO 23.5' TAINED
			0 20	.O' BELOW GROU		UNITS $0_2 = 2$	n.97					FIRST S	
		SUNFAC	L•			LEL =						AND EV	ERY 5'
	. =											THEREA	FIEK.
	' =												
	=												-
ľ	\exists												
}	2												
į	\exists												
												•	
1	\exists												
1	3 —					ļ							}
	_												
ŀ	\exists										1		
	크												}
j	4 —										J		
	\exists												-
	-=												<u> </u>
	\exists												
	5 —					l							<u>_</u>
				DUECT							HOLE NO		

ECT		HTW DRILL	ING LOG				HOLE NO. WT114B	
co d	UMP SUPERFU	IND SITE	MICHELLE BEN	AK			OF 8 SHEETS	
	DEPTH b.	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS	
								E
ĺ	\exists							
								=
	=							E
	6 —							
		•						E
				,				E
.	7					ĺ		E
	· =							
	=							F
								E
	. =							
8	8 —							-
Ì		*						
	\exists							
	\exists			·				E
9	ə <u> </u>							F
	\exists							E
								E
								E
	\downarrow							
10	v <u> </u>							
								F
								F
					İ			F
					İ			
	,						•	
12	/ —							
İ								E
	=							
	\exists							F
,-	3 =							E
13								E
	\exists							
								E
14	4 —							
								F
		PROJECT HIMCO DUMP SUPERFUN				HOLE NO W TII4E		

OJECT		HTW DRILLIN	IG LOG				HOLE NO. WTII4B	
MCO	DUMP SUPER	FUND SITE	MICHELLE BEN	AK			OF 8 SHEETS	
ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS C.	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS h.	
1								F
	15							
								F
	16 —							F
	16 —							
l			}	,				E
				<u> </u>				
								E
	17							上
								_
								上
1								
	18	*						
Ì						-		F
								F
	7							_
İ	19 —							
	\exists							E
	_=							
	\exists							
-	20 —							
	\exists							F
	\exists							_
	<u>,</u>							
ľ	21 —							E
1	\exists				1		•	E
	\exists							E
1	22		1			1		上
						}		上
						1		
	7							F
2	23 —							F
	7		BREATHING					F
			ZUNE HNU = 4.0					
1	-POORL	Y GRADED SAND (SP): MEDIUM	BREATHING ZONE HNU = 4.0 UNITS O 2 = 20.9%					
	24 GRAVE	, WET, BROWN, TRACE OF EL, OUTWASH DEPOSITS.	LEL = 0%			1		E
14	4	PROJECT HIMCO DUMP SUPERFUND				HOLE NO.		

		HTW DRILLIN	G LOG				HOLE NO. WTII4B
JECT ICO	DUMP SUPE		MICHELLE BEN	IAK			SHEET 4 OF 8 SHEETS
.EV.	DEPTH b.	DESCRIPTION OF MATERIALS C.	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS Q.	REMARKS h.
						6	N = 21
						15	REC. = 1.5'
:	25 —						
		ŧ.					
	26 •			,			
	27 —						
		4					
	28						
	——————————————————————————————————————	RLY GRADED SAND (SP): SAME THE INTERVAL FROM 23.5'-25.0'.	BREATHING ZONE			2	
	29		HNU = 5.2 UNITS 0 ₂ = 20.8%				N = 13 REC. = 1.2'
		L GRADED SAND (SW): MEDIUM SE, WET, BROWN, MEDIUM TO RSE SAND, 10%-15% FINE GRAVEL,	LEL = 0%			4	
	OUT	WASH DEPOSITS.				9	
	30 —						
	31 —	!					•
	32						
	33						
\perp		PROJECT HIMCO DUMP SUPERFUND S				HOLE NO W TII 46	n.

2 IF 6 F		HTW DRILLI	NG LOG				HOLE NO. WTII4B	
VICO	DUMP S	UPERFUND SITE	MICHELLE BEN	IAK			OF 8 SHEETS	
ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS C.	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS h.	
] =	POORLY GRADED SAND WITH GRAVE (SP): DENSE, WET, MEDIUM TO COAR! SAND, 20%-25% FINE TO COARSE GRAVEL, OUTWASH DEPOSITS.	BREATHING SE ZONE HNU = 5.2 UNITS			24	N = 31	
		GNAVEL, OUTHASH DELOSH'S.	0 ₂ = 20.7% LEL = 0%			17	REC. = 1.0'	
	35 —	*			₹ }	14		
	•			,				
	36 —							
					-			
	37	•						
						a.		
	38 —							
	\exists	POORLY GRADED SAND WITH GRAVEL (SP): SAME AS THE INTERVAL FROM 33.5'-35.0' EXCEPT MEDIUM DENSE.	HNU = 5.0 UNITS			3	N = II REC. = 0.4'	
	39		0 ₂ = 20.8% LEL = 0%			3		
	40					8		
					-		•	
	41 —							
	42							
	43	PROJECT HIMCO DUMP SUPERFUND		<u></u>		HOLE NO),	

MCO DUMP SUPERFUND SITE MICHELLE BENAK OF 8 SHEETS FIELD SCREENING GEOTECH SAMPLE ANALYTICAL BLOW	ROJECT		HTW DRILLIN	SPECTOR				HOLE NO. WTH4B	
### ### ##############################		DUMP S		MICHELLE BEN	AK	T	•	1	
SSP: SAME AS THE INTERVAL FROM 20NE 352. GRAVEL. 352. GRAVEL. 20NE 48 352. GRAVEL. 353. M = 27 REC. = 0.2 20 REC. = 0.2 20 REC. = 0.7	ELEV.	1	{ · · · · · · · · · · · · · · · · · · ·	RESULTS	OR CORE BOX NO	SAMPLE NO.	COUNTS		
46 — 48 — 48 — 49 — POORLY GRADED SAND (SP): MEDIUM POENSE, WE'T, BROWN, MEDIUM TO COARSE SAND, TRACE OF GRAVEL. OUT WASH DEPOSITS. O2 = 20.7% LEL = 0% 6			(SP): SAME AS THE INTERVAL FROM 33.5'-35.0' EXCEPT MEDIUM DENSE. 35% GRAVEL.	ZONE HNU = 4.8 UNITS O ₂ = 20.7%				N = 27 REC. = 0.2'	
		46	•	ZONE HNU = 5.0 UNITS 0 ₂ = 20.7%			23	N = 26 REC. = 0.7'	

O DUMP SUPER DEPTH b. S3 WELL (SW): GRAV 54 55 57 57 57 57 57 57 57 57 57	DESCRIPTION OF MATERIALS C. L GRADED SAND WITH GRAVEL MEDIUM DENSE, WET, BROWN, VEL UP TO 34 IN DIAMETER.	BREATHING ZONE HNU = 3.8 UNITS 0 2 = 20.8% LEL = 0%	CEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	OF 8 SHEETS REMARKS h. N = 21 REC. = 0.1'
53 — WELL — (SW): — GRAV 54 — — — — — — — — — — — — — — — — — — —	c. L GRADED SAND WITH GRAVEL	BREATHING ZONE HNU = 3.8 UNITS 0 = 20.8%	OR CORE BOX NO	SAMPLE NO.	g.	h. N = 21
55 — 56 — 56 — 56 — 56 — 56 — 56 — 56 —	L GRADED SAND WITH GRAVEL : MEDIUM DENSE, WET. BROWN, VEL UP TO 3/4' IN DIAMETER.	ZONE HNU = 3.8 UNITS O ₂ = 20.8%			IO	
56		1			12 9	
58 — WELL (SW): -53.5′ 59 — — — — — — — — — — — — — — — — — — —	PROJECT HIMCO DUMP SUPERFUND	BREATHING ZONE HNU = 3.8 UNITS 0 2 = 20.8% LEL = 0%			15 9 9	N = 18 REC. = 0.5'

ROJECT		HTW DRILLIN	G LOG				HOLE NO. WTII4B	_
	DUMP SUP	ERFUND SITE M	ICHELLE BEN				of 8 SHEETS	
ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS C.	FIELD SCREENING RESULTS d.	OEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS h.	
	☐(G V ☐GRI	V): MEDIUM DENSE, WET, BROWN TO EY, 15%-20% MEDIUM TO COARSE ND, OUTWASH DEPOSITS.	BREATHING ZONE HNU = 4.8 UNITS O 2 = 20.8% LEL = 0%	D-I		5 7	N = 19 REC. = 1.5′	
	65 —							
		4						
i	66	BOTTOM OF HOLE @ 66.0'						
	67 —							

				HTW	DRILL	ING L	_0G					HOLE W T	: NO. 115 A
COMPAN		RPS OF	FNGI	NEERS	-	2. DRILLING	SUBCONT	RACTOR				SHEE	
3. PROJEC	T					IV/ A	4. LOCA	TION				OF :	3 SHEETS
		SUPERFU	JND	SITE			1	CHART, IN.					
JOE !	DE DRILLER MORRISS						6. MANUFACTURER'S DESIGNATION OF DRILL GUS PECH 1100C						
AND SA	ID TYPES O	F DRILLING IIPMENT		" I.D. HSA; 2" O.D EL SPLIT SPOO			B. HOLI	LOCATION					
				VEN BY A 140 F			9. SURI	ACE ELEVATIO)N				
			FOR	R SPT; HNU PHO									
			410	CGI.				E STARTED 22-95			8-22-9		
2. OVERBL	JRDEN THICK	NESS	Т					TH GROUNDWAT	ER EN	NCOUNTERED			
UNKN							12.2						
3. DEPTH N/A	DRILLED IN	TO ROCK					16. DEP	TH TO WATER,	AND I	ELAPSED TIME A	FTER DRILLIN	IG COMPLET	ED
1. TOTAL 18.0'	DEPTH OF	HOLE					17. OTH	ER WATER LEV	ÆL ME	EASUREMENTS (S	PECIFY)		
. GEOTEC	HNICAL SAM	IPLES		DISTURBED	U	NDIS TURBED	19	. TOTAL NUME	BER O	F CORE BOXES			
O. SAMPL	ES FOR CH	EMICAL ANAL	.YSIS	voc	META	ALS	OTHER	(SPECIFY)	01	HER (SPECIFY)	OTHER (SPECIFY)	21. TOTAL COL
													RECOVERY
2. DISPOS	DISPOSITION OF HOLE A BACKFILLED MONIT					IG WELL	OTHER	(SPECIFY)	23.	SIGNATURE OF	INSPECTOR		
					2" P	vc				MICHELLE	BENAK		
ELÉV.	DEPTH		DESCI	RIPTION OF MATERIALS		RES		GEOTECH SAMI		ANALYTICAL SAMPLE NO.	BLOW COUNTS		REMARKS
o.	0 —			С.		BACKG		е.	\dashv	f.	g.		h.
						HNU =				•			
						UNITS $0_2 = 2$	20.9%		1			1	
						LEL =							
						Ĭ							
	! ==												
	1												
	\exists												
	2					ļ			Į			ļ	
	\exists												
	\exists											-	
										•			
,	=								1	-			
ļ	3 —												
ŀ	=												
	=					1							•
		POORLY	GRAD	ED SAND (SP):	LOOSE,	BREAT	HING					L 1	= 9
		MOIST, LA SAND, QU	TWAS	EDIUM TO COAR SH DEPOSITS.	\JE	ZONE HNU =	1.5				2	RI RI	= 9 EC. = 1.5'
	4 —					UNITS 02 = 2	20.97			F			
	\exists					LEL =					4		
							ĺ			L			
											5		
	5 —			DUECT		<u></u>					HOLE NO		

	···.		HTW DRILLI					WTIISA
ROJECT IMCO	DUMP SI	JPERFUND SI	TE	INSPECTOR MICHELLE BEN	AK			SHEET 2 OF 3 SHEETS
ELEV.	DEPTH 6.	DESC	RIPTION OF MATERIALS	FIELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX NO	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS
V	/	AS THE INTER	DED SAND (SP): SAME RVAL FROM 3.5'-5.0' TTLE FINER GRAINED.	BREATHING ZONE HNU = 0.8 UNITS O ₂ = 20.9% LEL = 0%			1 2	N = 3 REC. = 0.4'
	— ¦ A	OORLY GRAD S THE INTER XCEPT MEDIL	ED SAND (SP): SAME VAL FROM 3.5'-5.0' JM DENSE.	BREATHING ZONE HNU = 0.6 UNITS 0 ₂ = 21.0% LEL = 0%	D-I	-	3	N = 10 REC. = 1.5′
		PF	ROJECT MCO DUMP SUPERFUND	- 	1		HOLE N	o.

		HTW DRILLI					HOLE NO. WTIISA	
PROJECT HIMCO	DUMP SUF	PERFUND SITE	INSPECTOR MICHELLE BEN	AK			SHEET 3 OF 3 SHEETS	
ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS a.	REMARKS	
			:	D-I		5		E
	15							E
								F
								E
	16	*						
				ı				F
			ļ					E
	17							E
	l'' =							
		•						
	18							
		BOTTOM OF HOLE @ 18.0'						-
	=		1					E
	19 ===							
								<u> </u>
	\equiv							
	=							 -
						ĺ		
						ļ		
							•	E
								F
İ								
								F
	三							E
								E
								E
	\exists							E
	\exists							E
	\exists							
								E
		PROJECT HIMCO DUMP SUPERFUND	SITE			HOLE NO W TIISA	o. A	

				HTW	DRILLI	NG L	.OG					HOLE WT	
		\DDC ^F	CHO	יובנטכ	2.	DRILLING	SUBCONT	TRACTOR				SHEE	Fi
U.S. A		ORPS OF	ENGIN	VEERS	<u> </u>	N/A	4. LOCA	A TION				OF 3	SHEETS
		SUPERFL	ONL S	SITE			ł	CHART, IN.					
	ARMY CORPS OF ENECT CO DUMP SUPERFUN OF DRILLER MORRISSEY AND TYPES OF DRILLING SAMPLING EQUIPMENT BURDEN THICKNESS NOWN H DRILLED INTO ROCK A L DEPTH OF HOLE O' ECHNICAL SAMPLES PLES FOR CHEMICAL ANALYSI OSITION OF HOLE DEPTH DI D. O SEE LOG O FOR A DES								IATION OF DRILL				
			1417.	I.D. HSA; 2" O.D.	CARRON			S PECH 110 E LOCATION					
AND SA	MPLING EOU	JIPMENT		EL SPLIT SPOOF		R	0. 1100	E EGGATION					
			1	'EN BY A 140 F			9. SUR	FACE ELEVATIO	N				
			FOR 410	SPT: HNU PHO	PID: ISTM	Χ	IO. DAT	E STARTED	·		H. DATE CO	MPLETED	
			110	,	<u></u>	·· 	1	7-95		1	8-17-9		
		(NESS	1					TH GROUNDWAT	ER EN	COUNTERED			
	DEPTH DRILLED INTO ROCK						10.0		AND E	ELAPSED TIME AF	TER DRILL	NG COMPLET	ED
N/A	•							18-95 7 : 4					
		HOLE					17. OTH	ER WATER LEV	EL ME	EASUREMENTS (S	PECIFY)		
		(PLES		DISTURBED	LIKI	DISTURBED	1.	9. TOTAL MINA	REP OF	F CORE BOXES			
			_	bis i under						. JOINE BOXES			
O. SAMPL	ES FOR CH	EMICAL ANAL	YSIS	voc	METAL	.S	OTHER	(SPECIFY)	ОТ	HER (SPECIFY)	OTHER	(SPECIFY)	21. TOTAL CORE
													2
2. DISPOS	MCO DUMP SUPERFUND ME OF DRILLER WE MORRISSEY S AND TYPES OF DRILING STAND TYPES OF DRILING FOR AIL ERBURDEN THICKNESS NKNOWN PTH DRILLED INTO ROCK A TAL DEPTH OF HOLE 5.0' OTECHNICAL SAMPLES AMPLES FOR CHEMICAL ANALYSIS SPOSITION OF HOLE V. DEPTH b. DE TOWN TO IC SURFACE.	-	BACKFILLED	MONITORING	WELL	OTHER	(SPECIFY)	23.	SIGNATURE OF I	NSPECTOR			
		Γ		2" P\	/C				MICHELLE E	BENAK			
						FIELD SCI		GEOTECH SAM		ANALYTICAL	BLOW	T	·
ELEV.			DESCR	RIPTION OF MATERIALS		RES		OR CORE BOX	NO.	SAMPLE NO.	COUNTS g.	· •	REMARKS h.
				BORING FOR WI		BACKG			_				D TO 13.5'
				RIPTION OF MAT BELOW GROUND		HNU = UNITS	0.2		-			SAMPLE	TAINED A FROM
		SURFACE				02 = 2 LEL =						13.5′- 15	5.0′.
						LEL -	0%					}	
												1	
							,		- 1				
	, =												
j	-									}			
	\exists												
	CO DUMP SUPERFUN FOR PRILLER MORRISSEY AND TYPES OF DRILLING AND												
[
[·						
ĺ													
				ļ					-		ļ		
1													
1	, =												
	4									}			
Ì	\exists												
	-						}						
	1						- {						
ł	コ									,			
	5		T .	JECT			l				HOLE N	<u></u>	

		HTW DRILL					HOLE NO. WTII6A	
OJECT MCO	DUMP SUPER	RFUND SITE	INSPECTOR MICHELLE BEN	AK			SHEET 2 OF 3 SHEETS	
ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS	
	6							
					[
		4						
	_ =			j				
	7							
	8 —							
		*						
			·					
	9 —			1				
						i.		
	., =							
	10 —							
▽				`		,	WATER © 10.6'	
	=							
	" -							
	12						,	
	=							ļ
	13							ļ
	.7 =							
	POOR	LY GRADED SAND (SP): LOOSE GREY, 5% GRAVEL, OUTWASH	,					ļ
	DEPO	GREY, 5% GRAVEL, OUTWASH SITS.	BREATHING			1	N = 4 REC. = 1.5'	
			ZONE 0 ₂ = 20.9%			1		
		PROJECT HIMCO DUMP SUPERFUN	LEL = 0%			HOLE N		

OJECT .		HTW DRIL	LING LOG				HOLE NO. WTII6A SHEET 3	
MCO	DUMP SUP	ERFUND SITE	MICHELLE BEN	AK			OF 3_ SHEETS_	
LEV.	DEPTH b.	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS G.	REMARKS h.	
						3		
	15 —							_
	=	BOTTOM OF HOLE @ 15.0'						F
								E
						Ì		F
		*						F
	16	·						E
				,				E
) 	1		F
								-
								E
								-
								<u> </u>
								F
		•						
ļ								-
								F
						1		F
	\exists							E
								L
								F
								F
	=							E
								E
			}					F
	7							F
								E
								F
	一					Ì	•	F
							,	E
					Í			
								-
								F
	\exists				}			E
	\exists							
								<u> -</u>
-	=							F
								E
								E
								F
	크							F
		PROJECT HIMCO DUMP SUPERFU				HOLE NO WTII64		

				HTW	DRILL	ING L	_OG				-11-71	HOLE		
. COMPAN	Y NAME	RPS OF	FNGII	NFFRS	[2	DRILLING	SUBCONT	RACTOR				SHEE		
. PROJEC	Ť					N/ A	4. LOC	ATION				OF 7	SHEETS	
		SUPERFL	JND S	SITE 			1	CHART, IN.	ESICA	IATION OF DRILL				
		EY					l	S PECH 110		ATION OF DIVIEL				
SIZES AN	ID TYPES O	F DRILLING (31/4" 1	.D. HSA; 2° O.D.	CARBON		8. HOL	E LOCATION					**	
		L					9. SUR	FACE ELEVATION	iN .					
		-			PID;					·		· 		
		-	ISTM)	X 410 CGI.		·	1	e started 6-95			8-17-9			
		NESS	******				l	TH GROUNDWAT			400C0	** A T.CO.		
		TO ROCK								Y HAVE TR ELAPSED TIME AI			ED	
N/A										PM 9.5′ 8		7:35 AM	7.6′	
TOTAL 60.0		HOLE						er water lev 8-95 9:0		EASUREMENTS (SI	PECIFY)			
GEOTEC	HNICAL SAM	IPLES		DISTURBED	UI	NDIS TURBED	L			F CORE BOXES				
SALADI	ES FOR CUI	FMICAL ANAL	YSIS	Voc	META	1.5	OTUES	(SPECIFY)	01	HER (SPECIFY)	OTHER	(SPECIFY)	21. TOTAL C	005
J. JAMPL	O DUMP SUPERFUND SITE OF DRILLER MORRISSEY NO TYPES OF DRILLING G'/4" I.D. HSA; 2" O.D. CA STEEL SPLIT SPOON S DRIVEN BY A 140 POUI FOR SPT; HNU PIIOIPID; ISTMX 410 CGI. URDEN THICKNESS IOWN DRILIFD INTO ROCK DEPTH OF HOLE CHNICAL SAMPLES DESCRIPTION OF MATERIALS O TOPSOIL - VEGETATED, WEEDS. 1 CONSTRUCTION RUBBLE: RECOVER BLACK SUBSTANCE. PROJECT		META		OTHER	(SPECIFY)	01	HER (SPECIFI)	UINER	(SPECIFI)	RECOVE	₹Y		
DISPOS	ARMY CORPS OF ENGINEERS COTOTOMP SUPERFUND SITE OF DRILLER MORRISSEY IND TYPES OF DRILLING SAMPLING EQUIPMENT OF SPT; HOU PHOLE OF SPT; HOU PHOLE OF SPT; HOU PHOLE OF SPT; HOU PHOLE OF CHICAL SAMPLES OF CHEMICAL ANALYSIS OF TOPSOIL - VEGETATED, WEEDS OF TOPSOIL - VEGETATED, WEEDS OF CONSTRUCTION RUBBLE: RECOVERED OF SPT; HOU PHOLE OF CHAMBER OF MATERIALS OF TOPSOIL - VEGETATED, WEEDS OF CONSTRUCTION RUBBLE: RECOVERED		MONITORIN	IC WELL	ATUEO	(CBEGIEV)	27	SIGNATURE OF I	NSPECTOR			<i>"</i>		
0.5, 03		- - t -	}	BACKFILLED	2* P		UTHER	(SPECIFY)	دی.	MICHELLE I				
					L	اـــــا	DECHINA	GEOTECH SAM	0, 5	ANALYTICAL	B. 6W			
ELEV.		i	DESCF			RES	ULTS	OR CORE BOX		SAMPLE NO.	BLOW COUNTS 9-	R	EMARKS h.	
	0 =	TOPSOIL	- VĒ	GETATED, WEED	S.	BACKGI HNU =						 		
						UNITS								
						_02 = 2 LEL =			- 1)				
						1								F
	-=													}
	\exists									ļ				Ę
İ														-
-	\exists													F
	2 —						,			1				}
∇	\exists								1	1		WATER	o 2.4′	
		N THICKNESS N IFP INTO ROCK TH OF HOLE AL SAMPLES OF CHEMICAL ANALYSIS OF MOLE DESCRIPTION OF MATERIALS C. TOPSOIL - VEGETATED, WEEDS. CONSTRUCTION RUBBLE: RECOVER PROJECT PROJECT						-						
1	\exists	GEOUPMENT STEEL SPLIT SPOON SAM DRIVEN BY A 140 POUND FOR SPT; HNU PIIO! PID; ISTMX 410 CGI. THICKNESS FO INTO ROCK A OF HOLE SAMPLES OR CHEMICAL ANALYSIS OF HOLE DESCRIPTION OF MATERIALS C. TOPSOIL - VEGETATED, WEEDS. CONSTRUCTION RUBBLE: RECOVERED ED BLACK SUBSTANCE.											E	
	3 —												ļ	
ļ	. =													Ė
	-3	THICKNESS INTO ROCK OF HOLE SAMPLES CHEMICAL ANALYSIS DISTURBED I DESCRIPTION OF MATERIALS C. TOPSOIL - VEGETATED, WEEDS.							-		1		-	
	\exists	DESCRIPTION OF MATERIALS C. TOPSOIL - VEGETATED, WEEDS. CONSTRUCTION RUBBLE: RECOVERE PIECES OF CONCRETE, COVERED B BLACK SUBSTANCE.			VERED	BREATH	IING				65		= 73 C. = 1.4'	-
	4	DRIVEN BY A 140 POUNI FOR SPT; HNU PHOLPID; ISTMX 410 CGI. HICKNESS INTO ROCK SP HOLE SAMPLES DISTURBED CHEMICAL ANALYSIS VOC HOLE BACKFILLED ME DESCRIPTION OF MATERIALS C. TOPSOIL - VEGETATED, WEEDS. CONSTRUCTION RUBBLE: RECOVER PIECES OF CONCRETE, COVERED BLACK SUBSTANCE.		ZONE HNU =						"	.0 1.4	E		
	=	INTO ROCK F HOLE AMPLES CHEMICAL ANALYSIS DESCRIPTION OF MATERIALS C. TOPSOIL - VEGETATED, WEEDS.		UNITS	1				8			F		
		THICKNESS P INTO ROCK OF HOLE SAMPLES CHEMICAL ANALYSIS OF HOLE DESCRIPTION OF MATER C. TOPSOIL - VEGETATED, WI CONSTRUCTION RUBBLE: RE PIECES OF CONCRETE, CON BLACK SUBSTANCE.				02 = 2 LEL =				-		-		
	_ =	DESCRIPTION OF MATERIALS c. TOPSOIL - VEGETATED, WEEDS. CONSTRUCTION RUBBLE: RECOVER PIECES OF CONCRETE, COVERED BLACK SUBSTANCE.								65			-	
	5 -			. IFCT							HOLE N			
					ERFUND S	ITE					WTII6			

		HTW DRILL					WTII6B	
ROJECT IMCO	DUMP SUPE	ERFUND SITE	INSPECTOR MICHELLE BEN	AK			SHEET 2 OF 7 SHEETS	
ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS C.	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS G.	REMARKS n.	
	MOI OU1	ORLY GRADED SAND (SP): LOOSE ST, GREY, FINE TO MEDIUM SANI WASH DEPOSITS. SANIC SOIL (OL/OH): MEDIUM STIL ST, BLACK, SOME ROOTS.	D, ZONE HNU = 0.4			3 3	N = 6 REC. = 1.4'	
		RLY GRADED SAND (SP): LOOSE, ,GREY, MEDIUM SAND, 5% GRAVE WASH DEPOSITS.	BREATHING ZONE HNU = 1.0 UNITS 02 = 20.9% LEL = 0%			2	N = 3 REC. = 1.5'	
1		PROJECT HIMCO DUMP SUPERFUND				HOLE NO).	

ROJECT		HTW DRILLI	NG LOG TINSPECTOR				HOLE NO. WTII6B	
	DUMP SUPE	RFUND SITE	MICHELLE BEN	ΔK			OF 7 SHEETS	
ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS	
	15 —					-		
		ŧ.						
	16 —			,				
	17 —							
	18 —	•						
		RECOVERY	BREATHING ZONE HNU = 1.2 UNITS				N = 2 REC. = 0.0′	
	19 —		0 ₂ = 20.9% LEL = 0%			ı	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	20 —					1		
	21 —						•	
	22							
	23 —		BREATHING					
	POO AS EXC	RLY GRADED SAND (SP): SAME THE INTERVAL FROM 13.5'-15.0' EPT MEDIUM DENSE, MEDIUM TO RSE SAND, 10% GRAVEL.	ZONE HNU = 1.2 UNITS 0 ₂ = 20.9% LEL = 0%			4		
	24 — COA	PROJECT HIMCO DUMP SUPERFUND				HOLE NO WTII6B		

חורה.		HTW DRIL	LING LOG				HOLE NO. WTIIGB SHEET 4
IMCO	DUMP SUPERF	FUND SITE	MICHELLE BEN	AK			OF 7 SHEETS
ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d.	CEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS h.
						8	N = 20 REC. = 1.5'
	25					12	
		,					
		·		,			
	26.						
	27 —						
		•					
	28 —						
	POORL	LY GRADED SAND (SP): SAM HE INTERVAL FROM 13.5'-15. PT MEDIUM DENSE, MEDIUM	E BREATHING ZONE			9	
	29COARS	SE SAND.	TO HNU = 1.4 UNITS 0 ₂ = 20.9% LEL = 0%			7	N = 10 REC. = 1.4'
	30 —					3	
	_=						
	31 —						•
	<u>_</u>						;
	32 —						
	33						
						E	ND OF DRILLING 3-16-95

		HTW DRILLI					HOLE NO. WT116B
ROJECT IMCO	DUMP SU	JPERFUND SITE	INSPECTOR MICHELLE BEN	AK			SHEET 5 OF 7 SHEETS
ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS h.
	34 —	POORLY GRADED SAND (SP): SAME AS THE INTERVAL FROM 13.5′-15.0′.	HNU = 1.6 UNITS			1	BEGIN DRILLING ON 8-17-95
			0 ₂ = 20.8% LEL = 0%			2	N = 5 REC. = 1.5'
	35 —					3	
	40 ————————————————————————————————————	POORLY GRADED SAND (SP): SAME AS THE INTERVAL FROM 13.5'-15.0'.	BREATHING ZONE HNU = 0.8 UNITS 0 2 = 20.8% LEL = 0%			3	N = 6 REC. = 1.5'
	43 —	PROJECT HIMCO DUMP SUPERFUND				HOLE WTII6	NO.

ROJECT	D	HTW DRILLI	NG LOG INSPECTOR MICHELLE BEN	AV			HOLE NO. WTII6B	
ELEV.	DUMP S DEPTH b.	UPERFUND SITE DESCRIPTION OF MATERIALS C,		GEOTECH SAMPLE OR CORE BOX NO	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	OF 7 SHEETS REMARKS h.	
		POORLY GRADED SAND (SP): SAME AS THE INTERVAL FROM 13.5'-15.0' EXCEPT MEDIUM DENSE.	BREATHING ZONE HNU = 2.2 UNITS 02 = 20.8% LEL = 0%	,		8 10 5	N = 15 REC. = 1.5'	
	46	POORLY GRADED SAND (SP): SAME AS THE INTERVAL FROM 13.5'-15.0'.	BREATHING ZONE HNU = 0.8 UNITS O2 = 20.8% LEL = 0%			5 5 4	N = 9 REC. = 1.5'	
		PROJECT HIMCO DUMP SUPERFUND	SITE			HOLE NO	•	

		HTW DRILLIN					HOLE NO. WTII6B	
ROJECT IMCO	DUMP SU		INSPECTOR MICHELLE BEN	AK			SHEET 7 OF 7 SHEETS	- 1
ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS	
		POORLY GRADED SAND (SP): SAME AS THE INTERVAL FROM 13.5'-15.0' EXCEPT MEDIUM TO COARSE SAND. POORLY GRADED SAND (SP): LOOSE. WET, BROWN, FINE SAND, OUTWASH DEPOSITS.	BREATHING ZONE HNU = 2.0 UNITS O ₂ = 20.8% LEL = 0%			2 2 5	N = 7 REC. = 1.5′	
	55 —	- 						
	<i>—</i> ₩	POORLY GRADED SAND (SP): LOOSE, WET, GREY, 10% GRAVEL, OUTWASH WEPOSITS.	BREATHING ZONE HNU = 1.0 UNITS O 2 = 20.9% LEL = 0%	D-I		3 3 3	N = 6 REC. = 1.5'	
	61 —	BOTTOM OF HOLE & 60.0'						
	62 =	PROJECT				HOLE NO		E

.

				HTW	DRILLI	ING L	OG					HOLE	
	IY NAME ARMY CO	ORPS OF	ENGI	NEERS	2	DRILLING	SUBCON	TRACTOR			•	SHEE:	T I SHEETS
PROJEC	T .	SUPERFL					4. LOC	ATION (HART, IN.				105	. United
NAME	OF DRILLER MORRISS			- · · -			6. MAN	UFACTURER'S C		NATION OF DRILL	· · · · · · · · · · · · · · · · · · ·		
		OF DRILLING UIPMENT	41/4	I.D. HSA; 2' 0.D.	. CARBON			S PECH 110 E LOCATION	OC				
AND S	AMPLING EQI	UIPMENI	STE	EL SPLIT SPOO	N SAMPLI	ER	Q SING	FACE ELEVATIO					· · · · · · · · · · · · · · · · · · ·
				<u>'EN BY A 140 F</u> SPT; HNU PHO			J. JUN	TACE EEEVATIO	44				
			410	CGI.			1	E STARTED 15-95			8-15-9		
OVERB	URDEN THIC	KNESS	1					TH GROUNDWAT					
DEPTH	DRILLED IN	TO ROCK				·	IG. DEP	TH TO WATER	AND	ELAPSED TIME A	FTER DRILLIN	G COMPLET	ED
N/A TOTAL	DEPTH OF	HOLE						8-18-95 II		AM II.3'	PECIEY)		•
17 . 5′													
GEOTE	CHNICAL SAI	MPLES		DISTURBED 	UN.	1DISTURBED	'	9. TOTAL NUME	BER (OF CORE BOXES			
O. SAMPI	LES FOR CH	EMICAL ANAL	YSIS	VOC	META	LS	OTHER	(SPECIFY)	0	THER (SPECIFY)	OTHER (SPECIFYI	21. TOTAL CORE RECOVERY
	ELEV. DEPTH DESI					MONITORING WELL 2" PVC							
: DISPO			}	BACKFILLED				(SPECIFY)	23.	SIGNATURE OF H			
					J 2. P		PEENING	GEOTECH SAM	DI E	ANALYTICAL	BLOW		
ELEV.			DESCR	RIPTION OF MATERIALS			ULTS	OR CORE BOX		SAMPLE NO.	COUNTS	R	EMARKS
	2	FOR A D	ESCF	BORING FOR WI RIPTION OF MAT BELOW GROUND	ERIALS	BACKGF HNU = UNITS O ₂ = 2 LEL = BREATH ZONE HNU = UNITS O ₂ = 2 LEL =	1.2 20.9% 0% HING 1.2					AUGERE AND OB SAMPLE 13.5'- IS	
	5 —		PPO	IFCT						L	HOLE NO	<u> </u>	
				JECT JCO DUMP SUPE	ERFUND S	SITE					WTII7		

OJECT		HTW DRILLIN	G LOG				HOLE NO. WTII7A	
	DUMP SUPER		MICHELLE BEN				OF 3 SHEETS	
ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS C-	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS G.	REMARKS h.	
						·		
	6 —							
							<u> </u>	
		•						
	7 - 1			,				
						i		
ļ								
	8 —					ļ		ļ
		4						
						į		
	9 =							
	\exists							ļ
	10							-
								ŀ
	_ =							
}	" =							
						ļ	•	ŀ
								ŀ
	12							F
	=							F
ĺ								
	13							-
	\exists							
	WELL	GRADED SAND (SW): MEDIUM	-		}			
	DENSE SAND,	E, WET, BROWN, FINE TO MEDIUM OUTWASH DEPOSITS.				4	N = 10 REC. = 1.2'	-
	14					6	WATER ADDED TO HOLE TO RETRIEVE SAMPLE.	
		PROJECT HIMCO DUMP SUPERFUND	-		L	HOLE N		

		HTW DRILL					HOLE NO.	
PROJE HIM(ect CO DUMP SL	JPERFUND SITE	INSPECTOR MICHELLE BEN	AK			SHEET 3 OF 3 SHEETS	
ELE		DESCRIPTION OF MATERIALS	FÆLD SCREENING RESULTS d.	CEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS Q.	REMARKS h.	
	15 —					4		
	17	BOTTOM OF HOLE & 17.5'						
	18							
							-	
		PROJECT HIMCO DUMP SUPERFUNI				HOLE N		

				HTW	DRILLII	NG L	.0G				HOLE	
I. COMPAN		RPS OF	ENCIL	JEEDS	1	DRILLING	SUBCONT	RACTOR			SHEE	T I
• PROJEC	ct	w				N/A	4. LOCA	TION			OF 8	SHEETS
	OF DRILLER	SUPERFL	JND S	HTE HTE				HART, IN.	ESIGNATION OF DRIL	1		
	MORRISS	EY						PECH 110		·L		
7.SIZES AI AND S	IND TYPES C AMPLING EQU	F DRILLING OF DRILLING OF DRILLING OF THE PRINCE OF THE PRINCE OF THE PRINCE OF THE PRINCE OF THE PRINCE OF THE PRINCE OF THE PRINCE OF THE PRINCE OF THE PRINCE OF THE PRINCE OF THE PRINCE OF THE PRINCE OF THE PRINCE OF T	61/4" I. STEEL	D. HSA; 2" O.D. SPLIT SPOON	CARBON SAMPLER		8. HOLE	LOCATION				
		F		N BY A 140 PO SPT: HNU PIIOIF		MER	9. SURF	ACE ELEVATIO	N			
		- F		410 CGI.	10;			STARTED		II. DATE COM		
12. OVERB	BURDEN THIC	(NESS						4-95 H GROUNDWAT	ER ENCOUNTERED	8-14-95		
	NOWN	TO BOCK			 		11.5		AND ELAPSED TIME	AFTER ODULINA	COMPLET	
N/A		TO ROCK							IAM II.O' 8-			
4. TOTAL 65.0	DEPTH OF	HOLE					17. OTH	R WATER LEV	EL MEASUREMENTS	(SPECIFY)		,
	CHNICAL SAN	IPLES .	П	DISTURBED	UNC	DIS TURBED	19	. TOTAL NUME	ER OF CORE BOXES	 	 .	
20. SAUD	PLES FOR CH	EMICAL ANAL	YSIS	VOC	METAL		07150	(SPECIFY)	OTHER (SPECIFY)	OTHER (S	PECIEVI	21. TOTAL CORE
EG, SAME	CES FOR CH	CHICAL AITAL	-, 3,3	+00	METAL	-	UIHER	(SPECIF T)	STREET (SPECIFT)	OTHER IS	T COT 11	RECOVERY
22. DISPO	SITION OF H	OLE		BACKFILLED	MONITORING	WELL	OTHER	(SPECIFY)	23. SIGNATURE OF	INSPECTOR		× ×
			ŀ	DAGINI CEED	2" PV		OTHER	.5. 20. 17	MICHELLE			
ELEV.	DEPTH		DESCR	RIPTION OF MATERIALS		RESU	ILTS	GEOTECH SAM OR CORE BOX	NO. SAMPLE NO.	BLOW COUNTS	R	REMARKS
a.	b.	<u></u>	·	с.		a. BACKGF		е.	f.	g.		h
	=					HNU = UNITS	3.2					
						0 ₂ = 2 LEL =						
							٠,٠					
	1 -											
							ĺ		1			
									i i			
	2 -											
	2 =											
	2											
	2									To the second se		
	2											
	3 —										•	
	3 —											
				ED SAND (SP):								
		MOIST. LK	GHT E	ED SAND (SP): BROWN,FINE TO H DEPOSITS.						2		= 6 ·C - 15′
		MOIST. LK	GHT E	BROWN, FINE TO						2		= 6 CC. = 1.5′
		MOIST. LK	GHT E	BROWN, FINE TO						2		
		MOIST. LK	GHT E	BROWN, FINE TO								
		MOIST. LK	GHT E	BROWN, FINE TO								
		MOIST. LK	GHT E	BROWN, FINE TO						3	RE	

DDA 15.5		HTW DRILL	ING LOG				HOLE NO. WTII7B	
PROJECT HIMCO	DUMP SUPER	FUND SITE	MICHELLE BEN				SHEET 2 OF 8 SHEETS	
EL EV.	DEPTH b.	DESCRIPTION OF MATERIALS c.	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS h.	
	MOIS	GRADED SAND (SW): LOOSE, T, LIGHT BROWN, MEDIUM TO RSE SAND, OUTWASH DEPOSITS	BREATHING ZONE HNU = 3.0 UNITS O ₂ = 20.9% LEL = 0%			3 4 4	N = 8 REC. = 1.4'	
	—4 F X C F	GRADED SAND (SW): SAME HE INTERVAL FROM 8.5'-10.0' PT MEDIUM DENSE, WET, SER GRAINED, 5% GRAVEL.	BREATHING ZONE HNU = 2.5 UNITS O ₂ = 20.9% LEL = 0%		-	1	N = 12 REC. = 1.5'	
		PROJECT HIMCO DUMP SUPERFUNI				HOLE NE		上

100 1552		HTW DRILLIN	IG LOG				HOLE NO. WTII7B	
PROJECT HIMCO	DUMP SUF		MICHELLE BEN	AK			OF 8 SHEETS	
ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS h.	
	15					8		
	16	ŧ.		,				
	7 - 71							
	18 —	*						
	<u> </u>	ELL GRADED SAND (SW): SAME AS HE INTERVAL FROM 8.5'-10.0' XCEPT WET.	BREATHING ZONE HNU = 2.0 UNITS 0 2 = 20.9% LEL = 0%			3	N = 14 REC. = 1.5′	
	20 —	DORLY GRADED SAND (SP): MEDIUM ENSE, WET, LIGHT GREY, FINE TO EDIUM SAND, OUTWASH DEPOSITS.				8		
	21 —							
	22							
	23 —		BREATHING ZONE					
	-disv	ELL GRADED SAND WITH GRAVEL	HNU = 2.0 UNITS 0 ₂ = 20.9% LEL = 0%			2 HOLE NO		

ROJECT		HTW DRILLII	INSPECTOR				HOLE NO. WTII7B	
IIMCO	DUMP SI	UPERFUND SITE	MICHELLE BEN				OF 8 SHEETS	
ELEV.	OEPTH b.	DESCRIPTION OF MATERIALS C.	FIELD SCREENING RESULTS d.	OEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS h.	
						2	N = 8 REC. = 0.8′	
	25					6		E
		*					,	E
	26			r		,		
	27 —							
		•						
	28 —							
		VELL GRADED SAND WITH GRAVEL SW):SAME AS THE INTERVAL FROM	BREATHING ZONE			3		
	292	YELL GRADED GRAVEL (GW): WET,	HNU = 1.8 UNITS 0 2 = 20.9% LEL = 0%			4	N = 18 REC. = 1.4'	
		CREY, COARSE GRAVEL, OUTWASH DEPOSITS. WELL GRADED SAND WITH GRAVEL				14		
	70 一(SW): SAME AS THE INTERVAL FROM 23.5'-25.0'.						
	71							
	31							
	32 —							
								E
	33							
	\exists							E
		PROJECT HIMCO DUMP SUPERFUND				HOLE NO WTII7E).	

ECT			INSPECTOR				HOLE NO. WT117B
	JMP SI	UPERFUND SITE	MICHELLE BEN		,	, , , , , , , , , , , , , , , , , , , 	OF 8 SHEETS
EV.	DEPTH b.	DESCRIPTION OF MATERIALS c.	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS
,		WELL GRADED SAND (SW): MEDIUM DENSE, WET, GREY, FINE TO COARSE SAND, OUTWASH DEPOSITS.	BREATHING ZONE HNU = 1.6			3	N_= 14
3	4		UNITS 0 ₂ = 20.9% LEL = 0%			6	REC. = 1.5'
7	5 —					8	
	,						
31	6						
3	7	v.					
38	8 = 3						
39	,	WELL GRADED SAND (SW): SAME AS THE INTERVAL FROM 33.5'-35.0' EXCEPT DENSE, 5% GRAVEL.	BREATHING ZONE HNU = 1.8			4	N = 37 REC. = 1.5'
			UNITS 0 ₂ = 20.9% LEL = 0%			27	
40) =						
41							
42							
43	, =						
		PROJECT HIMCO DUMP SUPERFUND	CITE	-,		HOLE NO W TILTE). a

MINCE DIAMP SUPERFUND SITE MINCELLE BENAX Or 8 GETS	PROJECT		HTW DRILL	INSPECTOR				HOLE NO. WTII7B SHEET 6
### MELL GRADED GRAVEL (GW): LOOSE, OUT WASH DEPOSITS. #### WELL GRADED GRAVEL (GW): LOOSE, OUT WASH DEPOSITS. #### WELL GRADED GRAVEL (GW): SAME HUMI 1.6 ##### HUMI 1.6 ##### HUMI 1.6 ##### HUMI 1.6 ##### HUMI 1.6 ##### HUMI 1.6 ###### HUMI 1.6 ######## HUMI 1.6 ###################################	HIMCO	DUMP SUPE	RFUND SITE			1	, ,	OF 8 SHEETS
## ## ## ## ## ## ## ## ## ## ## ## ##				RESULTS	OR CORE BOX NO	SAMPLE NO.	COUNTS	
48 — WELL GRADED CRAVEL (GW): SAME 49 — AS THE INTERVAL FROM 43.5"-45.0" EXCEPT MEDIUM DENSE. 10 N = 12 REC. = I.I' HNU = 1.5 UNITS 02 = 20.9% LEL = 0% 7		44 ———————————————————————————————————	, GREY, FINE TO COARSE GRA WASH DEPOSITS.	VEL, ZONE HNU = 1.6 UNITS 0 ₂ = 20.9%			4	N = 8 REC. = 1.2'
		47 ————————————————————————————————————	_ GRADED GRAVEL (GW): SAME THE INTERVAL FROM 43.5′-45	.0' ZONE HNU = 1.5 UNITS 02 = 20.9%			5	N = 12 REC. = 1.1'

		HTW DRILLIN					HOLE NO. WTII7B
ROJECT	DUMP SUPER	RFUND SITE	INSPECTOR MICHELLE BEN	AK			SHEET 7 OF 8 SHEETS
ELEV. a.	DEPTH b.	DESCRIPTION OF MATERIALS c.	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS h.
	(SP) 54COA	RLY GRADED SAND WITH GRAVEL DENSE, WET, GREY, FINE TO RSE SAND, 15%-20% GRAVEL, WASH DEPOSITS.	BREATHING ZONE HNU = 1.6 UNITS O ₂ = 20.9% LEL = 0%			19 22 12	N = 34 REC. = 0.6'
	56 ————————————————————————————————————	. GRADED GRAVEL (GW): LOOSE, GREY, FINE TO COARSE GRAVEL. VASH DEPOSITS.	BREATHING ZONE HNU = 1.6 UNITS O 2 = 20.9% LEL = 0%			4 4 3	N = 7 REC. = 0.9'
	61 —	PROJECT				HOLE N	0.

PROJECT NUMBER OF MATERIALS SUPERFUND SITE NUMBER OF A SHEET SHEET STATE OF THE MATERIALS SUPERFUND SUPERFUND STATE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE NO. COSTITS SA			HTW DRILLIN	G LOG				HOLE NO. WTII7B	
ELEV. DEPTM DESCRIPTION OF MATERIALS FELD SCREEMNO RESULTS WELL GRADED GRAVEL (GW): SAME AS THE INTERVAL FROM 58.5'-60.0'. HNU = 0.5 UNITS 0 2 = 20.9½ LEL = 0% BOTTOM OF HOLE @ 65.0' THE MONITORING WELL SET IN THIS BORING WAS ABANDONED DUE TO NON-COMPLIANCE WITH THE FIELD SAMPLE MONITORING LOCATED 10.0' SOUTH OF THE ORIGINAL BORING LOCATED 10.0' SOUTH OF THE ORIGINAL BORING WAS AUGERED DOWN TO 62.5' BELOW GROUND SURFACE AND A NEW MONITORING WELL STREET HELD SAMPLING TO SHELD WAS AUGERED DOWN TO 62.5' BELOW GROUND SURFACE AND A NEW MONITORING WELL STREET HELD SAMPLING TO SHELD WAS AUGERED DOWN TO 62.5' BELOW GROUND SURFACE AND A NEW MONITORING WELL		HMP SUE			4K				7
## WELL GRADED GRAVEL (GW): SAME AS THE INTERVAL FROM 58.5'-60.0'. HOUE AS THE INTERVAL FROM 58.5'-60.0'. UNITS 0 2 = 20.9% LEL = 0% ### MONITORING WELL SET IN THIS BORING WAS ABANDONED DUE TO NON-COMPLIANCE WITH THE FIELD SAMPLING PLAN. A NEW BORING LOCATED IO.0' SOUTH OF THE ORIGINAL BORING WAS AUGERED DOWN TO 62.5' BELOW GROUND SURFACE AND A NEW MONITORING WELL SET IN THIS BORING LOCATED IO.0' SOUTH OF THE ORIGINAL BORING WAS AUGERED DOWN TO 62.5' BELOW GROUND SURFACE AND A NEW MONITORING WELL	ELEV.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX NO	SAMPLE NO.	COUNTS	REMARKS	
	6 6	5.3 — WI — AS	ELL GRADED GRAVEL (GW): SAME S THE INTERVAL FROM 58.5'-60.0'. BOTTOM OF HOLE © 65.0'	BREATHING ZONE HNU = 0.5 UNITS 0 2 = 20.9%	0.		1 4 3	N = 7 REC. = 1.5' THE MONITORING WELL SET IN THIS BORING WAS ABANDONED DUE TO NON-COMPLIANCE WITH THE FIELD SAMPLING PLAN. A NEW BORING LOCATED IO.O' SOUTH OF THE ORIGINAL BORING WAS AUGERED DOWN TO 62.5' BELOW GROUND SURFACE AND A NEW MONITORING WELL	

				HTW	DRILI	LING I	LOG					HOLE W TI	
. COMPAN		RPS OF	ENICIN	VIEEDS		2. DRILLING	SUBCON	TRACTOR				SHEET	
. PROJEC	ī					1 N/A	4. LOC	ATION				OF 8	SHEETS
		SUPERFL	IND S	SITE			1	KHART, IN.			-		
	OF DRILLER MORRISS	ΕY					i	UFACTURER'S D S PECH 110		NATION OF DRILL			
SIZES AN	ND TYPES O	F DRILLING 6	31/4" 1.	.D. HSA; 2° 0.D	. CARBON	l	8. HOL	E LOCATION					
AND SE	IMI CINO CO	[5]	TEEL	SPLIT SP00	N SAMPL	ER	0 6115	FACE ELEVATION	4.				
		-		N BY A 140 I SPT: HNU PHOI		AMMER	3, 30	FACE ELEVATIO	WA				
		<u> </u>		410 CGI.				E STARTED 18-95			II. DATE COM 8-18-9		
OVERBU	JRDEN THIC	(NESS						TH GROUNDWAT	ER EI	NCOUNTERED	0 10-3	 -	
UNKN	IOWN						12.	0'					
. DEPTH N/A	DRILL [! V III	TO ROCK					1	TH TO WATER 21-95 9:2		ELAPSED TIME AI	FTER DRILLIN	IG COMPLET	ED
	DEPTH OF	HOLE		<u></u>						EASUREMENTS (S	PECIFY)		
63.5		·					<u> </u>						
. GEOTEC	CHNICAL SAN	(PLES	ĺ	DIS TURBED		UNDISTURBED		9. TOTAL NUMI	BER C	OF CORE BOXES			
O. SAMPL	ES FOR CH	EMICAL ANAL	rsis	VOC	ME	TALS	OTHE	R (SPECIFY)	ОТ	THER (SPECIFY)	OTHER (SPECIFY)	21. TOTAL COR
													RECOVERY
2. DISPOS	SITION OF H	OLE		BACKFILLED	MONITO	RING WELL	OTHER	(SPECIFY)	23.	SIGNATURE OF I	NSPECTOR		<u> </u>
					2'	PVC	ļ			MICHELLE I	BENAK		
				-,		FIELD SO	REENING	GEOTECH SAM	PLE	ANALYTICAL	BLOW	Γ	
ELEV.	DEPTH b.		DESCR	RIPTION OF MATERIAL	. \$		SULTS ·	OR CORE BOX	NO.	SAMPLE NO. f.	COUNTS	F	REMARKS h.
	0 —	TOPSOIL	- WE	EDS		BACKG							
	_					HNU = UNITS	0.2						
		<u> </u>	- -			02 = : LEL =							
	· =					1	U/•						
						ĺ							
								ł					
	2							}	- }				
ĺ	\equiv												
	\exists								1				
	3												
	7 =												
	\exists	POORLY (GRAD	ED SAND WITH	H SILT	BREAT	HING						
1		(SP-SM): 1 DEPOSITS		r, brown, out	WASH	ZONE HNU =	0.0			<u> </u>			
ļ	7	POORLY (GRAD	ED SAND (SP	LOOSE,	UNITS					2	l .	= 5 [C. = 1.5′
	4 —	COARSE	SAND	BROWN, MEDIU , OUTWASH DE	POSITS.	0 ₂ =				<u> </u>			.0. = 1.5
}	\exists						-·•				2		
1										-			
											3		
	5 —		T == :								1		
				JECT ICO DUMP SUI	PERFUND	SITE					WTII8E		

		HTW DRILLI					HOLE NO. WTII8B	
PROJECT HIMCO	DUMP S	UPERFUND SITE	INSPECTOR MICHELLE BEN	AK	_ :-	_	SHEET 2	
ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS Q.	REMARKS	
	6	POORLY GRADED SAND (SP): SAME AS THE INTERVAL FROM 3.7'-5.0' EXCEPT TAN. POORLY GRADED SAND (SP): LOOSE, MOIST, TAN, FINE SAND, OUTWASH DEPOSITS.	BREATHING ZONE HNU = 0.0 UNITS	e.	7.	2 2 3	N = 5 REC. = 1.5'	
	13 —	POORLY GRADED SAND (SP): SAME AS THE INTERVAL FROM 9.1'-10.0' EXCEPT WET.	BREATHING ZONE HNU = 0.2 UNITS 0 2 = 20.9% LEL = 0%				N = I (ONE 6" INTERVAL ONLY) REC. = 1.5'	

		HTW DRILLII					HOLE NO. WTII8B
PROJECT HIMCO	DUMP SUP	ERFUND SITE	INSPECTOR MICHELLE BEN	AK			SHEET 3 OF 8 SHEETS
ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS c.	FIELD SCREENING RESULTS d.	CEOTECH SAMPLE OR CORE BOX NO	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS
	20 — POOL POOL	ORLY GRADED SAND (SP): SAME THE INTERVAL FROM 9.1'-10.0' CEPT WET. DRLY GRADED SAND WITH GRAVEL): WET, GREY, MEDIUM TO COARSE ND, 20%-25% GRAVEL, OUTWASH POSITS. DRLY GRADED SAND WITH GRAVEL	BREATHING ZONE HNU = O.I				N = ! (ONE 6' INTERVAL ONLY) REC. = 1.5'
	24 719.1	PROJECT HIMCO DUMP SUPERFUND	LEL = 0%			HOLE NO. WTII8B	•

ROJECT		HTW DRILLIN	IG LOG				HOLE NO. WTII8B	
	DUMP SUPE		MICHELLE BEN	AK			OF 8 SHEETS	
El.EV.	DEPTH b.	DESCRIPTION OF MATERIALS C.	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS O.	REMARKS h.	
						2	N = 4 REC. = 0.9'	
						2	REC. = 0.9	
	25 —							
	26 –			,				
	27 — –							
		· ·						
	28 —							E
	DEN:	L GRADED GRAVEL (GW): MEDIUM SE, WET, GREY, FINE TO COARSE VEL. OUTWASH DEPOSITS.	BREATHING ZONE HNU = 0.1			5	N = 17	
	29		UNITS 0 ₂ = 20.9% LEL = 0%			6	REC. = 1.5'	E
								E
	30 —							
	31 —						•	E
	32 —							
	33 —							
								E
		PROJECT HIMCO DUMP SUPERFUND	SITE			HOLE NO	n. B	

JECT		HTW DRILLIN	NG LOG				HOLE NO. WTII8B
	DUMP SI	JPERFUND SITE	MICHELLE BEN	AK			OF 8 SHEETS
l.EV.	DEPTH b.	DESCRIPTION OF MATERIALS c.	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS
	-	WELL GRADED GRAVEL (GW): SAME AS THE INTERVAL FROM 28.5'-30.0' EXCEPT LOOSE.	BREATHING ZONE HNU = 0.0 UNITS 0 2 = 21,0% LEL = 0%			5	N = 9 REC. = 1.3'
	40	WELL GRADED GRAVEL (GW): SAME AS THE INTERVAL FROM 28.5'-30.0'.	BREATHING ZONE HNU = 0.2 UNITS 0 ₂ = 20.9% LEL = 0%			6 8 7 .	N = 15 REC. = 1.5'
	43 —	PROJECT HIMCO DUMP SUPERFUND				HOLE NO WTII8B	

MINCE DUMP SUPERFUND SITE	PROJECT		HTW DRILI	INSPECTOR				HOLE NO. WTII8B SHEET 6
### MELL GRADED GRAVEL (GW): SAME #### A5 THE INTERVAL FROM 28.5"-30.0" #### A5 THE INTERVAL FROM 28.5"-30.0" #### A5 THE INTERVAL FROM 28.5"-30.0" #### A5 THE INTERVAL FROM 28.5"-30.0" #### A5 THE INTERVAL FROM 28.5"-30.0" #### A5 THE INTERVAL FROM 28.5"-30.0" #### A5 THE INTERVAL FROM 28.5"-30.0" #### A5 THE INTERVAL FROM 28.5"-30.0" #### A5 THE INTERVAL FROM 28.5"-30.0" #### A5 THE INTERVAL FROM 28.5"-30.0" #### A5 THE INTERVAL FROM 28.5"-30.0" #### A5 THE INTERVAL FROM 28.5"-30.0" #### A5 THE INTERVAL FROM 28.5"-30.0" ##### A5 THE INTERVAL FROM 28.5" #### A5 THE INTERVAL FROM 28.5" #### A5 THE INTERVAL FROM 28.5" #### A5 THE INTERVAL FROM 28.5" #### A5 THE INTERVAL FROM 28.5" #### A5 THE INTERVAL FROM 28.5" #### A5 THE INTERVAL FROM 28.5" #### A5 THE INTERVAL FROM 28.5" #### A5 THE INTERVAL FROM 28.5" #### A5 THE INTERVAL FROM 28.5" #### A5 THE INTERVAL FROM 28.5" #### A5 THE INTERVAL FROM 28.5" ### A5 THE INTERVAL FROM 28.5" #### A5 THE INTERVAL FROM 28.5" ##		DUMP SU	PERFUND SITE	MICHELLE BEN	.	,		
## AS THE INTERVAL FROM 28.5'-30.0' ## AS THE I				RESULTS	OR CORE BOX NO	SAMPLE NO.	COUNTS	
48 — 48 — 49 — AS THE INTERVAL FROM 28.5'-30.0'. BREATHING ZONE HINLS 0.2 UNITS 0.2 UN		44 ———————————————————————————————————	S THE INTERVAL FROM 28.5'~3(7.0' ZONE HNU = 0.2 UNITS 02 = 20.9%	j		17	N = 42 REC. = I.I'
PROJECT HOLE NO. HIMCO DUMP SUPERFUND SITE WT118B		46 ————————————————————————————————————	ELL GRADED GRAVEL (GW): SAME 5 THE INTERVAL FROM 28.5'-30	JONE HNU = 0.2 UNITS 02 = 21.0% LEL = 0%			7	REC. = 1.0'

ROJECT			INSPECTOR				HOLE NO. WTII8B
IIMCO ELEV.	DUMP SUPERI		MICHELLE BEN	GEOTECH SAMPLE OR CORE BOX NO	ANALYTICAL SAMPLE NO.	BLOW COUNTS	OF 8 SHEETS
a.	☐(SP): ☐MEDII	c. LY GRADED SAND WITH GRAVEL MEDIUM DENSE.WET.GREY, JM TO COARSE SAND,25%-30% EL,OUTWASH DEPOSITS.	d. BREATHING ZONE	, ·	f.	7 9	N = 22 REC. = 1.2'
	55 — — — — — — — — — — — — — — — — — —	Y GRADED SAND WITH GRAVEL SAME AS THE INTERVAL FROM 55.0'.	BREATHING ZONE HNU = 0.2 UNITS 0 2 = 21.0% LEL = 0%	D-I		13	N = 22 • REC. = 1.3'
	02	PROJECT HIMCO DUMP SUPERFUND				HOLE NO).

		HTW DRILI	ING LOG				HOLE NO. WT118B	
ROJECT IIMCO	DUMP SUF	PERFUND SITE	MICHELLE BEN	AK			SHEET 8 OF 8 SHEETS	
ELEV.	DEPTH b.	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d.	GEOTECH SAMPLE OR CORE BOX NO e.	ANALYTICAL SAMPLE NO. f.	BLOW COUNTS g.	REMARKS	
							······································	E
]		F
								E
	63 —	,						E
		•						-
		BOTTOM OF HOLE @ 63.5'						E
	64							F
Ì								F
								E
								þ
	65 —							F
	65 —	`*						E
	=							F
								F
	\exists							E
	\exists							
}								F
1	\exists							
								F
ĺ	\exists							F
								E
	\exists					j		F
	\exists							
			1			Í		
	\exists						•	F
								E
	\exists							E
								-
	7							F
İ								
!								F
}				}				F
	\exists							E
ļ								
}	\exists							F
								E
ĺ								
	\exists			}				F
		PROJECT HIMCO DUMP SUPERFU				HOLE NO		

APPENDIX C: GEOTECHNICAL TEST RESULTS

DEPARTMENT OF THE ARMY MISSOURI RIVER DIVISION, CORPS OF ENGINEERS DIVISION LABORATORY OMAHA, NEBRASKA 68102

Subject:	Classification Tests on Soil							
_	Report Series No. 1							
Project:	HIMCO Superfund Site							
Intended								
Source o	f Material: Borings WT 112A through WT 118B							
	•							
Submitte	d by: Chief, CEMRO-ED-GB							
Date Sam								
Method o	Method of Test or Specification: EM 1110-2-1906							
Referenc	es: Omaha District Request dated 9/8/95							
	MIPR No. ENE 5712 dated 9/9/95							

- 1. Subject testing has been performed in accordance with the above test method and reference. Test results are shown in Tables 1 and 2 and Figures through 5. All tests were performed on specimens obtained from jar amples. Preliminary results were sent on 27 October 95.
 - 2. Unless otherwise notified, all remaining material will be disposed of 90 days after the date of this report.

Submitted by:

R. K. SCHLENKER P.E.

Chief, Soils, Conc and Matls Branch

DOUGLAS B. TAGGART

Director, MRD Laboratory

Dunglas b. Jaggart

DEPARTMENT OF THE ARMY Missouri River Division, Corps of Engineers Division Laboratory Omaha, Nebraska

Sheet 1 of 1

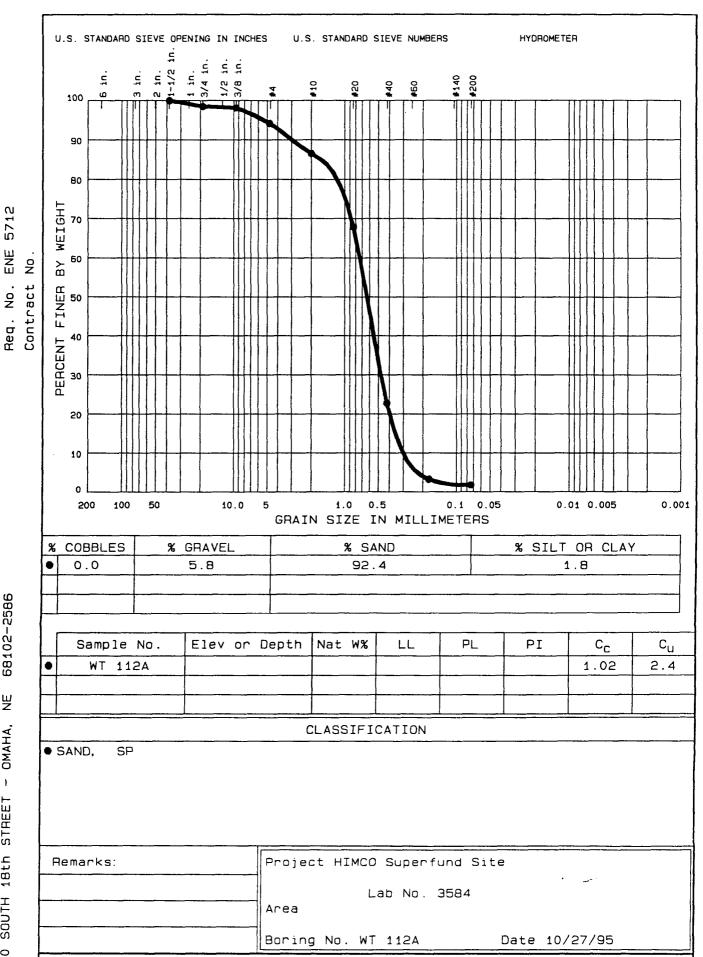
TABLE 1 - SUMMARY OF CLASSIFICATION TESTS

Project: HIMCO Superfund Site MRD Lab No. 3584

Holes WT 112A through WT 118B

Note: By visual examination and classification, samples not tested were compared and grouped with typical test samples described below:

- (a) Sand SP. Brown with White and Black. Fine to coarse sand. Nonplastic. Similar to Hole WT 112A, Sample 1 (1.8% Fines, 92.4% Sand, 5.8% Gravel; Cu-2.44, Cc-1.02).
- (b) Sand SP. Grayish Brown with Black. Fine to medium sand.
 Nonplastic. Similar to Hole WT 112B, Sample 1 (1.5% Fines, 98.5% Sand;


 u-1.92, Cc-1).
 - (c) Gravelly Sand SP. Gray, Black and White. Fine sand to fine gravel. Nonplastic. Similar to Hole WT 114B, Sample 1 (1.5% Fines, 81.3% Sand, 17.2% Gravel; Cu-9.24, Cc-0.92).
- (d) Sand SP. Yellowish Brown. Fine sand. Nonplastic. Similar to Hole WT 115A, Sample 1 (2.8% Fines, 96% Sand, 1.2% Gravel; Cu-2.7, Cc-1.32).
 - (e) Sand SP. Dark Gray with White. Fine to medium sand. Nonplastic. Similar to Hole WT 116A, Sample 1 (1.3% Fines, 98.2% Sand, 0.5% Gravel; Cu-2.46, Cc-0.86).

SOIL CLASSIFICATION RECORD SHEET

10 10 10 10 10 10 10 10			2010 Bus 124s A										SCHIMG: MT 112A through WT 1188	through	# # 118	2					HRID LAB NO.	# 000 1 # 200 1 # 200		:
1	3127 104;		. BAR	::				ELEV.1			BEN .	5 2 2	ER TAR	E							: DATE:	:0:21/75		
7 cm (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	2 5 E	1151-1 Pt	ASTICITY	ĺ	NYD, ANA	GRADI	5	KATIVE 1.S. ST	100 M	TS FIRE					S	MICH CA	IEVE ANA	(1515			CLASSIFICATION			į
2 3 3 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3	2		8.	5 1.024	8	2	\$				2 × 2 × 2	1-172	22 M	_	8 3	= 3	 3		= 12.				æ
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18.9 :	•• •• ••		··	•• •• ••		**	===	!	<u></u>	·		8		6.33	•	3	¥.	1.02		to pur	:Mote (s)		
2 4 10 22 54 12 57 100 2.2.0 0.2.0 0.2.0 0.2.0 1	10.09	•• •• ••					===	\$						 	8		. 3		8	** ** ** **	_	Hote (b)		
2 4 15 22 5 4 15 22 1 100	. 63.0)	·· ·· ·· ·	·· ·· ·· ·																. — 		2 ·	: Mote 19)		
2. 10 (2.2)					. · 		 :						~~.~~		~~~ ."			• •			3	. I their tab		
	1881 63.0 1			. 	· •• •• ••	~ ~ ~		===							2.4	**		×			Fevelly Sand SP	: :##te (c)		
	15.0	<u>-</u>				~ ~ ~	- - -	- E	-=-						~ ~ ·				77		ı	Hote (6)		
	_	*	·				- m	===	~ = :	_=.					3.	6.30		-	3		5	; ¡Mote (e)		
														در دو دو دو دو								Hele (6)	** ** ** *	
	15.0						•														a .		,, _{**} ** *	
	5.0	·											· .	en er er					~			: Wete (c)		
			·· ·· ··		·· ·· ··						·-			سم هم وي جم								Hote (c)	. منو ينو منو .	
	·· ·· ·· ··	·· ,. ··		······································						· · .														
			·	· •• •• ••	. 		,															aa ** a., .	··	
	 	 ••							·	~ ••						 	• •• •	···	~ ·· ·			·· ·· ··		

CORPS OF ENGINEERS, MISSOURI RIVER DIVISION LAB 420 SOUTH 18th STREET - OMAHA, NE 68102-2586

¥.0. No.

GRADATION CURVES

Figure 1

CORPS OF ENGINEERS, MISSOURI RIVER DIVISION LAB 420 SOUTH 18th STREET - OMAHA, NE 68102-2586

ENE

¥.0. №.

U.S. STANDARD SIEVE OPENING IN INCHES U.S. STANDARD SIEVE NUMBERS HYDROMETER 1 in. 3/4 in. 1/2 in. 3/8 in. 2 in. 1-1/2 #140 #200 #50 #40 #60 100 90 80 BY WEIGHT 70 Contract PERCENT FINER
8 4 6 20 10 10.0 0.5 0.1 0.05 0.01 0.005 0.001 100 50 1.0 200 GRAIN SIZE IN MILLIMETERS % COBBLES % GRAVEL % SILT OR CLAY % SAND 98.5 0.0 0.0 1.5 Sample No. Elev or Depth Nat W% LL PL ΡI C^{C} c_{u} 58.5'-60' 1.00 1.9 WT 112B CLASSIFICATION • SAND, SP Project HIMCO Superfund Site Remarks: Lab No. 3584 Area Boring No. WT 112B Date 10/27/95

GRADATION CURVES

Figure 2

CORPS OF ENGINEERS, MISSOURI RIVER DIVISION LAB 420 SOUTH 18th STREET - OMAHA, NE 68102-2586

5712

ENE

₩.O. No. Req. No.

U.S. STANDARD SIEVE OPENING IN INCHES U.S. STANDARD SIEVE NUMBERS HYDROMETER 1/2 in. 3/8 in. #140 **#**200 **\$**60 4 ø 100 90 80 PERCENT FINER BY WEIGHT 8 9 9 0 0 Contract 20 10 0 200 100 10.0 1.0 0.1 0.05 0.01 0.005 0.001 GRAIN SIZE IN MILLIMETERS COBBLES % GRAVEL % SAND % SILT OR CLAY 81.3 0.0 17.2 1.5 Nat W% Sample No. Elev or Depth LL PL ΡI $C_{\mathbf{u}}$ C_{C} WT 114B 0.92 9.2 CLASSIFICATION • GRAVELLY SAND, Remarks: Project HIMCO Superfund Site Lab No. 3584 Area Boring No. WT 114B Date 10/27/95

GRADATION CURVES

Figure 3

CORPS OF ENGINEERS, MISSOURI RIVER DIVISION LAB 420 SOUTH 18th STREET - OMAHA, NE 68102-2586

ENE

Req. No.

U.S. STANDARD SIEVE OPENING IN INCHES U.S. STANDARD SIEVE NUMBERS HYDROMETER 6 in #140 #200 100 90 80 BY WEIGHT 70 60 Contract PERCENT FINER
8 0 0 0 20 10 0.1 0.05 0.01 0.005 0.001 10.0 0.5 200 100 50 1.0 GRAIN SIZE IN MILLIMETERS % SILT OR CLAY % COBBLES % GRAVEL % SAND 96.0 2.8 0.0 1.2 Sample No. Elev or Depth Nat W% PL LL PΙ C^{C} $C_{\mathbf{u}}$ 13.5'-15' WT 115A 2.7 1.32 CLASSIFICATION • SAND, SP Remarks: Project HIMCO Superfund Site Lab No. 3584 Area Date 10/27/95 Boring No. WT 115A

GRADATION CURVES

Figure 4

80 BY WEIGHT 5712 ENE 2 Req. No. Contract PERCENT FINER 20 10 0 200 100 10.0 1.0 0.5 0.1 0.05 0.01 0.005 0.001 GRAIN SIZE IN MILLIMETERS COBBLES % GRAVEL % SAND % SILT OR CLAY 0.5 98.2 0.0 1.3 MISSOURI RIVER DIVISION LAB 68102-2586 c_c Sample No. Elev or Depth Nat W% LL PL ΡI c_{u} 13'-15' WT 116A 0.86 2.5 420 SOUTH 18th STREET - OMAHA, NE CLASSIFICATION • SAND, SP CORPS OF ENGINEERS, Remarks: Project HIMCO Superfund Site Lab No. 3584 Area Boring No. WT 116A Date 10/27/95 GRADATION CURVES Figure 5

U.S. STANDARD SIEVE NUMBERS

* 40

#14d

HYDROMETER

U.S. STANDARD SIEVE OPENING IN INCHES

100

90

1-1/2 in.

1/2 in. 3/8 in.

APPENDIX D:

MONITORING WELL CONSTRUCTION DIAGRAMS

ELEVATION GROUND WA	TER	PROJECT HIMCO DUMP SUPERFUND SITE
DATE INSTALLED	STARTED COMPLETED 95	N. 1533653, 49 E. 406824.67
ELEVATION TOP OF HOL	E GROUND - 763, 6	SIGNATURE OF INSPECTOR
TOTAL DEPTH OF HOLE		HOLE NO. WT112 A
		CONSTRUCTION DIAGRAM
		FROM GROUND SURFACE)
	TYPE OF 4-inch Squared Protective Casing: hinged lo	and steel W/
	TOP OF WELL	ching cap
<u> </u>	PROTECTIVE POSTS	STICK-UP 2.3 ft. GROUND SURFACE
	CONCRETE PAD 4'X4'X4"	
l u	CASING DIAMETER: 2 in.	SCREEN INFORMATION
da.	TYPE OF PIPE JOINTS: threade.	SCREEN DIA .: 1 in.
7.7 ft. 270S	TYPE OF BLANK CASING: School	SCHEDULE: 40
OF S	TOP OF SEAL	→ STEEL
ENGTH	TYPE OF SEAL: 3/8" benton it	OTHER (DESCRIBE)
LEN	TOP OF FILTERPACK	
\	TOP OF SCREEN	3,1 ft. 3.4 ft.
z		FILTERPACK MATERIAL CA
O tr.		TYPE: 16-30 Colorado Silia BACKFILL METHOD: Poured down
10 tr. SCRE	FILTERPACK	annular space between
WEI		Ciser and augurs.
	BOTTOM OF SCREEN	<u>15.4</u> ft.
	BOTTOM OF WELL BOTTOM OF BORING	
	WELL F	
		WATER LEVEL SUMMARY
		WATER LEVEL MEASUREMENTS DATE/TIME/LEVEL 8-24-95 10:074m 95ft.
		8-24-95 9:56 AM 8:5 ft.

ELEVATION GROUND WAT	ER	PROJECT HIMCO DUMP SUPERFUND SITE
DATE INSTALLED	STARTED COMPLETED 8-24-95	LOCATION (Coordinates or Station) N. 1533653.01 E. 406834.06
RISER - 766.09	E	SIGNATURE, OF INSPECTOR BOMA
TOTAL DEPTH OF HOLE	60.0 ft.	HOLE NO. WT112 B
		CONSTRUCTION DIAGRAM
		S FROM GROUND SURFACE)
	PROTECTIVE CASING	guare Steel W/
	PROTECTIVE CASING: hinged	locking cap
<u> </u>	PROTECTIVE POSTS	STICK-UP 2.7 ft, GROUND SURFACE
	CONCRETE PAD 4'X4'X4"	
ш	CASING DIAMETER: 2 in.	SCREEN INFORMATION
g.,	TYPE OF PIPE JOINTS: threade	SCREEN DIA .: 2 in .
57.1_ft. 9	TYPE OF BLANK CASING: Sched	Ule 40 SLOT WIDTH: 0.030 IN. SCHEDULE: 40
OF S	TOP OF SEAL	MATERIAL: X PVC STAINLESS STEEL
ENGTH	TYPE OF SEAL: Envirophia h	45.3 ft. OTHER (DESCRIBE)
Ž E	TOP OF FILTERPACK	<u> </u>
*	TOP OF SCREEN	<u> </u>
z		FILTERPACK MATERIAL TYPE 16-30 Colorado Silva
tr. Scree		BACKFILL METHOD: Pouved do
LENG PER S	FILTERPACK ————————————————————————————————————	annular space between asser and augers
WE		
<u> </u>	BOTTOM OF SCREEN BOTTOM OF WELL	59.4 ft.
	BOTTOM OF BORING	
	WELL	PLUG —
		WATER LEVEL SUMMARY
		WATER LEVEL MEASUREMENTS
		DATE/TIME/LEVEL 8-24-95 9:56 AM 8.8

ELEVATION GROUND WAT	ER	PROJECT HIMCO DUMP SUPERFUND SITE
DATE INSTALLED	STARTED COMPLETED 8-11-95	LOCATION (Coordinates or Station) N. 1533608,69 E. 407789.11
ELEVATION TOP OF HOLE	<u> </u>	SIGNATURE OF INSPECTOR
TOTAL DEPTH OF HOLE	23.7 ft.	HOLE NO. WT113 A
		CONSTRUCTION DIAGRAM
		S FROM GROUND SURFACE)
	PROTECTIVE CASING 4-inch 59 PROTECTIVE CASING: hinged lo	value steel w/
	TOP OF WELL PROTECTIVE POSTS CONCRETE PAD 4'X4'X4"	STICK-UP 217 1t. GROUND SURFACE
<u> 14.4</u> ft. 일	CASING DIAMETER: 2 in. TYPE OF PIPE JOINTS: Threade TYPE OF BLANK CASING: Schedu	SLOT WIDTH: 0.020 IN. SCHEDULE: 40
LENGTH OF S	TOP OF SEAL: 3/g" benton, TOP OF FILTERPACK TOP OF SCREEN	MATERIAL: X PVC STAINLESS STEEL OTHER (DESCRIBE) 7.1 ft. 10.6 ft.
WELL SCREEN	FILTERPACK —	FILTERPACK MATERIAL TYPE:16-30 Colorado Silica BACKFILL METHOD:Powed down annular Space between riser and augers.
	BOTTOM OF SCREEN BOTTOM OF WELL BOTTOM OF BORING WELL	21.7 ft. 21.9 ft. 23.7 ft.
	WELL	WATER LEVEL SUMMARY WATER LEVEL MEASUREMENTS DATE/TIME/LEVEL 8-10-95 16.5 ft. 8-11-95 2:30 pm 15.75 f

ELEVATION GROUND WAT	ER	PROJECT HIMCO DUMP SUPERFUND SITE
DATE INSTALLED	STARTED COMPLETED 8-10-95 8-11-15	LOCATION (Coordinates or Station) N. 1533604.43 E. 407779.02
RISER - 772		SIGNATURE OF MSPECTOR
TOTAL DEPTH OF HOLE	67,8 ft.	HOLE NO. WT113B
	MONITORING WELL (CONSTRUCTION DIAGRAM
		5 FROM GROUND SURFACE)
tt. SOLID PIPE	TOP OF SEAL TYPE OF SEAL: 3/8 !! Denton TOP OF FILTERPACK Points: Project of the points of the poi	STICK-UP 2.8 ft. GROUND SURFACE SCREEN INFORMATION SCREEN DIA: 2 in. SLOT WIDTH: 0,020 in. SCHEDULE: 40 MATERIAL: PVC STAINLESS STEEL OTHER (DESCRIBE) 19.0 ft. 51.0 ft.
tt. WELL SCREEN	FILTERPACK BOTTOM OF SCREEN	FILTERPACK MATERIAL TYPE: 16-30 Colorado Silica BACKFILL METHOD: Poured down annular space between riser and augers. 67.2 ft.
	BOTTOM OF WELL BOTTOM OF BORING	
	WELL	
		WATER LEVEL SUMMARY WATER LEVEL MEASUREMENTS DATE/TIME/LEVEL 8-9-15 10:15 Am 16.8 ft. 9-10-15 7:03 Am 16.3 ft. 2-11-15 7:15 Pm 16.0 ft.

ELEVATION GROUND WAT	FR	PROJECT
DATE INSTALLED		HIMCO DUMP SUPERFUND SITE
	STARTED COMPLETED 8-21-95 8-22-95	LOCATION (Coordinates or Station) N. 1531843.97 E. 407997.29
BISER - 769.19	GROUND - 766.7	SIGNATURE OF INSPECTOR BY AND A
TOTAL DEPTH OF HOLE	23,0 ft,	HOLE NO. WTILLA
	MONITORING WELL	CONSTRUCTION DIAGRAM
	(ALL MEASUREMENTS	FROM GROUND SURFACE)
	PROTECTIVE CASING 4-inch 5 PROTECTIVE CASING: hinged	quere steel w/ locking cap
	TOP OF WELL	
	PROTECTIVE POSTS	STICK-UP 2.5 ft GROUND SURFACE
H.S. H.	CASING DIAMETER: 2 in. TYPE OF PIPE JOINTS: Thread. TYPE OF BLANK CASING Schedul	SCREEN INFORMATION SCREEN DIA: 2 in. SLOT WIDTH: 0.020 in. SCHEDULE: 40 MATERIAL: PVC STAINLESS STEEL OTHER (DESCRIBE) 7.8 ft. 9.9 ft. 12.0 ft.
tt. WELL SCREEN LENGTH	FILTERPACK —	FILTERPACK MATERIAL TYPE: 16-30 Colorado Sílica BACKFILL METHOD: Poured down annular Space between riser and augers.
<u> </u>	BOTTOM OF SCREEN	22.0 ft.
	BOTTOM OF WELL BOTTOM OF BORING	23.0 ft.
	WELL 1	
		WATER LEVEL SUMMARY WATER LEVEL MEASUREMENTS DATE/TIME/LEVEL 8-21-15 1:39 PM 16.0 ft 8-22-95 7:47 AM 15.1 ft

ELEVATION GROUND WATER	PROJECT HIMCO DUMP SUPERFUND SITE
DATE INSTALLED STARTED COMPLETED 8-22-95 8-23-95	LOCATION (Coordinates or Station) N. 1531834,38 E. 407995.71 SIGNATURE OF INSPECTOR
RISER - 769.37 CAROUND-766.9	HOLE NO.
MONITORING WELL	CONSTRUCTION DIAGRAM
	S FROM GROUND SURFACE)
PROTECTIVE CASING TYPE OF PROTECTIVE CASING: hinged TOP OF WELL PROTECTIVE POSTS CONCRETE PAD 4'X4'X4" CASING DIAMETER: 2 in. TYPE OF PIPE JOINTS: threade TYPE OF BLANK CASING: Sched TYPE OF SEAL TYPE OF SEAL TYPE OF SEAL: Solids benton TOP OF SCREEN	STICK-UP 2.5 ft. GROUND SURFACE SCREEN INFORMATION SCREEN DIA: 2 in. SLOT WIDTH: 0.020 in. SCHEDULE: 40 MATERIAL: PVC STAINLESS STEEL Nigh OTHER (DESCRIBE) ATTERIAL: 56.2 ft. 56.2 ft. 50.3 ft.
5 ft. RELL SCREEN BOTTOM OF SCREEN	FILTERPACK MATERIAL TYPE: 16-30 Colorado Shica BACKFILL METHOD: Poured down annular space between riser and augers. 65,3 ft.
BOTTOM OF WELL BOTTOM OF BORING	65.3 ft. 65.5 ft. 66.0 ft.
WELL	
	WATER LEVEL SUMMARY WATER LEVEL MEASUREMENTS DATE/TIME/LEVEL ₹-23-95 9:∞ Am 15.2 ft

ELEVATION GROUND WATER		PROJECT HIMCO DUMP SUPERFUND SITE
DATE INSTALLED	SIARTED COMPLETED 8-23-95	LOCATION (Coordinates or Station) N, 1531675, 8計 E, 407261.44
ELEVATION TOP OF HOLE RISER-745.87	GREUND- 763.6	SIGNATURE OF INSPECTOR
TOTAL DEPTH OF HOLE	18.0 ft.	HOLE NO.
		CONSTRUCTION DIAGRAM
N		
		FROM GROUND SURFACE)
F	PROTECTIVE CASING H-inch Square	are Steel w/
F	PROTECTIVE CASING: hinged loc	thing cap
1	OP OF WELL PROTECTIVE POSTS	— — — — — — — — — — — — — — — — — — —
-	CONCRETE PAD 4'X4'X4"	STICK-UP 2.3 ft. GROUND SURFACE
	CASING	
1 10	MAMETER: 1 1.	SCREEN INFORMATION
	YPE OF PIPE JOINTS: Threade	
S	YPE OF BLANK CASING Sched	SCHEDULE: 40 MATERIAL: PVC STAINLESS
-	TOP OF SEAL 3/8" bentonite	STEEL OTHER (DESCRIBE)
0 -	TYPE OF SEAL: 18 bentonite OP OF FILTERPACK PELLETS	
-	OP OF SCREEN	
<u> </u>	OF OF SCREEN	ft.
Z		FILTERPACK MATERIAL TYPE 16-30 Colorado Silica
Lt. Oft.		BACKFILL METHOD: Poured down
ELL S	ILTERPACK	annular space between riser and augers.
WE		
- 	OTTOM OF SCREEN	
	OTTOM OF WELL OTTOM OF BORING	
_	WELL P	
		WATER LEVEL SUMMARY
		WATER LEVEL MEASUREMENTS DATE/TIME/LEVEL 8-22-95 1:00 PM 12.2 ft

ELEVATION GROUND WATER	HIMCO DUMP SUPERFUND SITE
DATE INSTALLED STARTED COMPLETED 8-17-95 8-18-95	N. 1531925.50 E. 406784.96
RISER- 763.86 GROUND - 761.7	SIGNATURE OF INSPECTOR
TOTAL DEPTH OF HOLE 15.0 ft.	WT116A
MONITORING WELL C	ONSTRUCTION DIAGRAM
	FROM GROUND SURFACE)
PROTECTIVE CASING TYPE OF PROTECTIVE CASING: hinged TOP OF WELL PROTECTIVE POSTS CONCRETE PAD 4'X4'X4" CASING DIAMETER: TYPE OF PIPE JOINTS: thread TYPE OF BLANK CASING: Schedul TOP OF SEAL TYPE OF SEAL TYPE OF SEAL: 3k" XXXIIII	SCREEN INFORMATION SCREEN DIA: SLOT WIDTH: SCHEDULE: MATERIAL: PVC STAINLESS STEEL OTHER (DESCRIBE)
TOP OF SCREEN TOP OF SCREEN TOP OF SCREEN TOP OF SCREEN TOP OF SCREEN	1.0 ft. 2.0 ft. 2.6 ft. FILTERPACK MATERIAL TYPE: 16-30 Colorado Silva BACKFILL METHOD: Paved down annular Space between riser and augers.
BOTTOM OF SCREEN	12.6 ft. 12.8 ft.
BOTTOM OF WELL BOTTOM OF BORING	15.0 ft.
WELL P	LUG ——
	WATER LEVEL SUMMARY WATER LEVEL MEASUREMENTS DATE/TIME/LEVEL 8-17-95 1:45 PM 10.6 ft. 8-17-95 7:40 km 7.9 ft.

		DOO IS O.T.
ELEVATION GROUND WAT	EK .	HIMCO DUMP SUPERFUND SITE
DATE INSTALLED	STARTED COMPLETED 8-17-95	N. 1531931.04 E. 406775, 79
ELEVATION TOP OF HOLE		SIGNATURA OF INSPECTOR
KISER - 763.8 TOTAL DEPTH OF HOLE		HOLE NO.
	60.0 ft.	WT116B
	MONITORING WELL	CONSTRUCTION DIAGRAM
	(ALL MEASUREMENTS	S FROM GROUND SURFACE)
	PROTECTIVE CASING TYPE OF PROTECTIVE CASING: hinged	guare steel w/ locking cap
*************************************	TOP OF WELL	
	PROTECTIVE POSTS CONCRETE PAD 4'X4'X4"	STICK-UP 20 H. GROUND SURFACE
tr. SCREEN LENGTH OF SOLID PIPE	CASING DIAMETER: 2 in. TYPE OF PIPE JOINTS: thread TYPE OF BLANK CASING: Schools TOP OF SEAL TYPE OF SEAL ENVIROLUME high	SLOT WIDTH: 0.030 IN. SCHEDULE: 40 MATERIAL: PVC STAINLESS STEEL
W E	BOTTOM OF SCREEN BOTTOM OF WELL BOTTOM OF BORING WELL	58.4 ft. 58.6 ft. 60.0 ft.
		WATER LEVEL SUMMARY WATER LEVEL MEASUREMENTS DATE/TIME/LEVEL 8-16-95 10:05 Am 2.4 ft. 8-16-95 12:40 Pm 9.5 ft. 7-17-95 7:35 Am 7.6 ft. 1-17-95 7:00 Am 10.9 ft.

ELEVATION GROUND WATE	R	PROJECT T
DATE INSTALLED		HIMCO DUMP SUPERFUND SITE
	STARTED COMPLETED 8-17-95	N. 1532201,98 E. 405908.93
RISER- 767.19	GROUND - 764.8	SIGNATURE OF INSPECTOR & LING K
TOTAL DEPTH OF HOLE	17.5 ft.	HOLE NO.
N	·	ONSTRUCTION DIAGRAM
	(ALL MEASUREMENTS	FROM GROUND SURFACE)
; - ;	PROTECTIVE CASING 4-inch 540 TYPE OF PROTECTIVE CASING: hinged to	whe steel wy
	TOP OF WELL PROTECTIVE POSTS	1 H C/
	CONCRETE PAD 4'X4'X4"	STICK-UP 2.4 ft, GROUND SURFACE
LENGTH OF SOLID PIPE	CASING 2 in. TYPE OF PIPE JOINTS: Threade, TYPE OF BLANK CASING Schedul TYPE OF SEAL: 3/2" bentonite TOP OF FILTERPACK TOP OF SCREEN	SCHEDULE: MATERIAL:
WELL LE	BOTTOM OF SCREEN BOTTOM OF WELL	FILTERPACK MATERIAL TYPE: 16-30 Colorado Silica BACKFILL METHOD: Poured down annular space between riser and augers. 15.5 ft. 15.7 ft.
<u> </u>	BOTTOM OF BORING	
	WELL P	LUG ——/
		WATER LEVEL SUMMARY WATER LEVEL MEASUREMENTS DATE/TIME/LEVEL 8-18-95 11:∞ AM 11.3 F4

ELEVATION GROUND WATER	3	PROJECT HIMCO DOMP SOPERFUND SITE
DATE INSTALLED	STARTED COMPLETED 8-17-95	LOCATION (Coordinates or Station) N. 1532202.51 E. 405796.41
ELEVATION TOP OF HOLE RISER - 766.60	GROUND - 764.4	SIGNATURAL OF MSPACTOR BOLL
TOTAL DEPTH OF HOLE	62.5 ft.	HOLE NO. WT 117 B
N		CONSTRUCTION DIAGRAM
		S FROM GROUND SURFACE)
LENGTH OF SOLID PIPE	PROTECTIVE CASING: YPE OF PROTECTIVE CASING: hinged PROTECTIVE POSTS CONCRETE PAD 4'X4'X4" CASING CHAMETER: YPE OF PIPE JOINTS: Human YPE OF BLANK CASING: Shed TYPE OF SEAL YPE OF SEAL YPE OF SEAL YPE OF FILTERPACK PEHE	STICK-UP 2,2 H. GROUND SURFACE SCREEN INFORMATION SCREEN DIA: 2 in. SLOT WIDTH: 0.020 in. SCHEDULE: 40 MATERIAL: PVC STAINLESS STEEL OTHER (DESCRIBE) 43.0 ft. 53.0 ft.
tr. WELL SCREEN	OP OF SCREEN OTTOM OF SCREEN OTTOM OF WELL	FILTERPACK MATERIAL TYPE 16-30 Colorado Silica BACKFILL METHOD: Poured down annular space between riser and augers. 61.3 ft. 61.5 ft.
<u> </u>	OTTOM OF BORING WELL	PLUG — ft.
·		WATER LEVEL SUMMARY WATER LEVEL MEASUREMENTS DATE/TIME/LEVEL \$ -14-95 8:25 AM 11.5 ft \$ -15-96 7:51 AM 11.0 ft \$ -15-15 11:54 AM 10.3 ft

ELEVATION GROUND WATER	PROJECT HIMCO DUMP SUPERFUND SITE
DATE INSTALLED STARTED COMPLETED 8-18-95	LOCATION (Coordinates or Station) N. 153 1917, 55 E. 406 361.16
RISER-766.49 GROUND-764.1	SIONMURE OF INSPECTOR & LM-LE
TOTAL DEPTH OF HOLE 63.5 ft.	HOLE NO. WT 118B
MONITORING WELL C	CONSTRUCTION DIAGRAM
(ALL MEASUREMENTS	FROM GROUND SURFACE)
PROTECTIVE CASING TYPE OF PROTECTIVE CASING: hinged TOP OF WELL PROTECTIVE POSTS CONCRETE PAD 4'X4'X4" CASING DIAMETER: 2 in. TYPE OF PIPE JOINTS: threade TYPE OF BLANK CASING: Schedu TYPE OF SEAL TYPE OF SEAL: 36" bentom'r TOP OF SCREEN	STICK-UP 2.4 St. GROUND SURFACE SCREEN INFORMATION SCREEN DIA: SCRE
5 ft. BOTTOM OF SCREEN BOTTOM OF WELL BOTTOM OF BORING	FILTERPACK MATERIAL TYPE: 16-30 Colorado Slika BACKFILL METHOD: Powed down annular space between riser and augers. 62.5 ft. 62.7 ft. 63.5 ft.
WELL F	WATER LEVEL SUMMARY WATER LEVEL MEASUREMENTS DATE/TIME/LEVEL 8-18-15 2:22 PM 12.0 ft

APPENDIX E:

MONITORING WELL DEVELOPMENT RECORDS

				Sl	TE & W	ELL DA	TA				
Projec	t: Himco D	ump Superfur	nd Site	,		Well Nu	mber: WT	El			
Locati	ion: Elkhart,	, IN				TOC EI	evation: 76	5.75			
Well (Coordinates	: N. 1531566	.72 I	E. 407131.3	6	Ground	Elevation:	762.9			
Date V	Well Install	ed: 10/11/77				Installed	Well Dep	th (TOC):	84.0'		
Date \	Well Develo	ped: 8/25/95				Screened	creened Interval (TOC): 74.0' to 84.0'				
Fluid	Losses Duri	ing Drilling:	N/A			Casing I	Diameter: :	5.0" Sched	ule 40 PVC	,	
				DE	VELOPN	MENT D	ATA				
□ Initi	ial Developi	ment 🎾	Redeve	lopment		Weather	Condition	s: Sunny,	warm, 90's		
Static Water Level (TOC): Initial: 13.59 ft					Initial:_	Sounded Depth (TOC): Post				elopment Water: hotographed XYes	
Date	pment Star : 8/25/95 :: 1101	t:			Developi Date:_8 Time:_		h:			*Measured Sediment Thickness in Jar:	
Misc. I	Notes:										
Subme		ne Calculation 67.4 ft * 1.02		68.7 gal Temp.	Turb.	Cond.	D.O.	Eh	.	One Submerged Volume: 68.7 gal	
	Pump Rate	Volume Removed	pii	(°C)	(ntu)	(mV)		()	(Co	Remarks	
81.0 ft Time	Rate (gpm)	Removed (gal)		(°C)	(ntu)	(mV)	()	()	(Co	Remarks	
81.0 ft Time	Rate (gpm)	Removed (gal)	8.35	15.9	4.7	-74.3	()	()	(Co		
81.0 ft Time 1404 1408	Rate (gpm) 10.0 10.0	Removed (gal) 0 40.0	8.35 8.28	15.9	7.4	-74.3 -74.1	()	()	(Co		
81.0 ft Time 1404 1408 1411	Rate (gpm) 10.0 10.0 10.0	Removed (gal) 0 40.0 70.0	8.35 8.28 8.37	15.9 16.1 15.2	4.7	-74.3 -74.1 -78.2	()	()	(Co		
81.0 ft Time 1404 1408 1411 1414	Rate (gpm) 10.0 10.0 10.0 10.0	Removed (gal) 0 40.0 70.0 100.0	8.35 8.28	15.9	4.7 7.4 9.5	-74.3 -74.1	()	()	(Co		
81.0 ft Time 1404 1408 1411	Rate (gpm) 10.0 10.0 10.0	Removed (gal) 0 40.0 70.0	8.35 8.28 8.37 8.48	15.9 16.1 15.2 14.5	4.7 7.4 9.5 3.0	-74.3 -74.1 -78.2 -84.3	()	()	(Co		
81.0 ft Time 1404 1408 1411 1414 1417	Rate (gpm) 10.0 10.0 10.0 10.0 10.0 10.0	Removed (gal) 0 40.0 70.0 100.0 130.0 160.0	8.35 8.28 8.37 8.48 8.62	15.9 16.1 15.2 14.5 13.3	4.7 7.4 9.5 3.0 4.2 3.2	-74.3 -74.1 -78.2 -84.3 -91.8 -92.1	rps of Engi		(Co		

USACE WELL DEVELOPMENT RECORD SITE & WELL DATA Project: Himco Dump Superfund Site Well Number: WTE1 Location: Elkhart, IN TOC Elevation: 765.75 **DEVELOPMENT DATA (CONT.)** Misc. Notes: pН Volume Turb. Cond. D.O. Eh Time Pump Temp. Remarks Rate Removed (gpm) (°C) (ntu) (mV)(Color, odor, etc.) (gal) 1423 190.0 10.0 8.47 13.7 6.4 -83.6 Name: Michelle Benak Firm: US Army Corps of Engineers

Date: 8/25/95

Page

		US	ACE	WEI	LL DE	VEL(OPME	NT R	ECO	RD
				SI	TE & W	ELL DA	TA			
Projec	t: Himco D	ump Superfun	d Site			Well Nu	mber: WT	01		
Locati	on: Elkhart,	IN				TOC Ele	evation: 76	2.83		
Well (Coordinates	: N. 1532407.	.14 E	. 407876.	93	Ground	Elevation:	762.83		
Date V	Well Installe	ed: 5/01/79				Installed	Well Dep	th (TOC):	30.0'	
Date V	Well Develo	ped: 8/28/95				Screened	Interval (TOC): 25.	0' to 30.0'	
Fluid Losses During Drilling: N/A						Casing D)iameter: 2	2.0" Schedu	ıle 40 PVC	
				DE	VELOPM	MENT DA	ATA			
□ Initi	ial Developr	nent 💢	Redevel	opment		Weather	Condition	s: Sunny,	warm, 90's	
Static Water Level (TOC): Initial: 11.2 ft Time: 1015 Final: 14.51 ft Time: 1230					1					elopment Water: hotographed XYes □ No
Date	pment Star : 8/28/95 :: 1045	t: **			Developn Date:_8 Time:_		l:			sured Sediment ness in Jar:
Misc.	Notes:									
		ne Calculatio 18.1 ft * 0.16		2.9 gal						One Submerged Volume: 2.9 gal
Time	Pump Rate (gpm)	Volume Removed (gal)	pН	Temp.	Turb.	Cond.	D.O.	Eh ()	(Co	Remarks lor, odor, etc.)
1114	0.5	2.0	6.55	15.1	>200	-7.6				
1118	0.5	4.0	6.96	13.9	>200	-23.2				·····
1122	0.5	6.0	7.11	13.7	188.9	-26.4				
1126	0.5	8.0	7.20	13.2	121.0	-30.7				
1130	0.5	10.0	7.24	13.3	113.5	-33.3				
1134	0.5	12.0	7.37	13.1	90.2	-39.9				-
Name:	Tim Jensen	and Carolyn	Schwafe	l	Firm: US	S Army Co	rps of Engi	neers		
Signat	ure: Lim	lema 1	acolin	Schwafel	Date: 8/2	28/95		Page _	1 of _2	<u> </u>

USACE WELL DEVELOPMENT RECORD

Project: Himco Dump Superfund Site Well Number: WT01 Location: Elkhart, IN TOC Elevation: 762.83

DEVELOPMENT DATA (CONT.)

3 4 .	BAY /
Whice	Notes:
111120.	Tions.

Name: Tim Jensen and Carolyn Schwafel

		 	,		1		r	 				
Time	Pump Rate	Volume Removed	pН	Temp.	Turb.	Cond.	D.O.	Eh	Remarks			
	(gpm)	.(gal)		(°C)	(ntu)	(mV)	()	()	(Color, odor, etc.)			
1138	0.5	14.0	7.43	13.0	>200	-42.6						
1142	0.5	16.0	7.46	13.5	>200	-44.3						
1146	0.5	18.0	7.47	13.8	>200	-45.2	}					
1150	0.5	20.0	7.51	13.9	137.1	-47.1						
1154	0.5	22.0	7.53	13.3	>200	-47.8						
1158	0.5	24.0	7.54	13.0	>200	-48.4						
1202	0.5	26.0	7.55	13.1	112.6	-48.5						
1206	0.5	28.0	7.56	13.1	63.5	-49.3						
1210	0.5	30.0	7.57	12.7	60.5	-50.2						
1214	0.5	32.0	7.58	13.1	52.8	-50.7			፡			
1218	0.5	34.0	7.6	13.0	46.8	-51.2						
1222	0.5	36.0	7.6	13.1	58.8	-50.9						
1226	0.5	38.0	7.6	13.1	57.0	-51.9						
	Ţ											
												

Firm: US Army Corps of Engineers

Date: 8/28/95

USACE, Omaha District. Form Develop2.95

of <u>2</u>

Page 2

				SI	TE & W	ELL DA	TA					
Projec	t: Himco D	ump Superfun	d Site			Well Number: WT101A						
Locati	on: Elkhart,		TOC Ele	evation:	764	1.34						
Well C	Coordinates	3	Ground	Elevatio	n:	762.0						
Date V	Vell Installe		Installed	Well D	ept	h (TOC):	18.73'					
Date V	Vell Develo	ped: 8/24/95				Screened	Interva	ıl (1	г ос): 7.8	33 to 17.73	ft	
Fluid	Losses Duri	ng Drilling: 1	N/A			Casing D	iameter	: 2	.0" Stainle	ess Steel		
				DE	VELOPN	MENT DA	ATA					
□ Initi	al Developi	nent 🙇	Redevel	opment		Weather	Conditi	ions	: Sunny,	warm, 90's		
Static Water Level (TOC): Initial: 12.25 ft Time: 1015 Final: 12.25 ft Time: 1135					Initial:_	Sounded Depth (TOC): Initial: 18.74 ft Time: 1016 Final: 18.74 ft Time: 1136					relopment Water: hotographed ¤Yes □ No	
Date:	pment Star 8/24/95 : 1030	t: ' '			Developr Date:_8 Time:_		1:			,	*Measured Sediment Thickness in Jar:	
Misc. I	Notes:											
		ne Calculatio = 6.4 ft * 0.16		1.0 gal		4, ,	•				One Submerged Volume: 1.0 gal	
Time	Pump Rate	Volume Removed	pН	Temp.	Turb.	Cond.	D.O .		Eh ()	(Co	Remarks	
	(gpm)	(gal)	l					\neg				
1055	0.25	(gal) 1.0	7.35	24.7	>200	-32.5		- 1				
			7.35 7.11	24.7	>200	-32.5 -19.9						
1055	0.25	1.0				 						
1055 1059	0.25	1.0	7.11	20.4	47.8	-19.9						
1055 1059 1103	0.25 0.25 0.25	1.0 2.0 3.0	7.11 7.06	20.4	47.8 31.6	-19.9 -17.7						
1055 1059 1103 1107	0.25 0.25 0.25 0.25	1.0 2.0 3.0 4.0	7.11 7.06 7.22	20.4 19.5 20.6	47.8 31.6 126.1	-19.9 -17.7 -24.0						
1055 1059 1103 1107 1111 1115	0.25 0.25 0.25 0.25 0.25 0.25	1.0 2.0 3.0 4.0 5.0	7.11 7.06 7.22 7.08 7.01	20.4 19.5 20.6 21.6 22.7	47.8 31.6 126.1 31.5 32.6	-19.9 -17.7 -24.0 -19.0	rps of E	ngi	neers			

USACE WELL DEVELOPMENT RECORD SITE & WELL DATA Project: Himco Dump Superfund Site Well Number: WT101A TOC Elevation: 764.34 Location: Elkhart, IN **DEVELOPMENT DATA (CONT.)** Misc. Notes: pН Time Pump Volume Temp. Turb. Cond. D.O. Eh Remarks Rate Removed (°C) (ntu) (mV)(Color, odor, etc.) (gpm) ' '(gal) 7.21 19.9 22.8 -25.9 7.0 1119 0.25 1123 0.25 8.0 7.28 18.9 22.3 -28.5 17.9 -30.0 9.0 7.30 15.6 1127 0.25 28.2 1131 0.25 10.0 7.27 18.1 -24.2 Name: Tim Jensen and Carolyn Schwafel Firm: US Army Corps of Engineers Signature: Date: 8/24/95 Page 2 of <u>2</u>

		US	ACI	E WEI	LL DE	EVEL(DPM	El	NT F	RECO:	RD	
				SI	TE & W	ELL DA	TA					
Project: Himco Dump Superfund Site						Well Number: WT101B						
Location: Elkhart, IN						TOC Elevation: 764.23						
Well Coordinates: N. 1531617.03 E. 407621.69						Ground Elevation: 761.9						
Date Well Installed: 12/14/90						Installed Well Depth (TOC): 100.53'						
Date Well Developed: 8/24/95						Screened Interval (TOC): 95.53' to 100.53'						
Fluid Losses During Drifting: N/A						Casing Diameter: 2.0" Stainless Steel						
				DE	VELOPN	MENT DA	ATA					
□ Initial Development ☐ Redevelopment						Weather Conditions: Warm, sunny, 90's						
Static Water Level (TOC): Initial: 13.27 ft Time: 0825 Final: 12.32 ft Time: 0955					Initial:_	Depth (TOC): 100.74 ft				Post Development Water: Jar Photographed		
Development Start: Date: 8/24/95 Time: 0830					Development Finish: Date: 8/24/95 Time: 0955				*Measured Sediment Thickness in Jar:			
Misc. N	Notes:			<u>, , , , , , , , , , , , , , , , , , , </u>								
Submerged Volume Calculation: 100.7 ft - 13.3 ft = 87.4 ft * 0.16 gal/ft = 14.0 gal									*	•	One Submerged Volume: 14.0 gal	
Time	Pump Rate (gpm)	Volume Removed (gal)	pН	Temp.	Turb.	Cond.	D.O.		Eh		Remarks	
							()	()	(Co	lor, odor, etc.)	
0934	1.5	14.0	7.63	15.0	5.8	-43.3	<u> </u>	+				
0939	1.5	21.0	7.48	14.5	2.1	-38.6		+				
0944	1.5	28.0	7.49	13.6	1.9	-39.2		\top				
0949	1.5	35.0	7.51	14.0	1.5	-39.2		1				
0954	1.5	42.0	7.52	13.8	1.5	-39.7		1				
										<u> </u>		
Name: Tim Jensen and Carolyn Schwafel					Firm: U	Firm: US Army Corps of Engineers						
Signature: Zin Open Midlem School						Date: 8/24/95 Page 1 of 1						

USACE WELL DEVELOPMENT RECORD SITE & WELL DATA Project: Himco Dump Superfund Site Well Number: WT102A Location: Elkhart, IN TOC Elevation: 769.09 Well Coordinates: N. 1534850.57 E. 405943.64 Ground Elevation: 766.7 Date Well Installed: Unknown Installed Well Depth (TOC): 18.47' Date Well Developed: 8/29/95 Screened Interval (TOC): 7.77' to 18.47' Fluid Losses During Drilling: N/A Casing Diameter: 2.0" Stainless Steel **DEVELOPMENT DATA** □ Initial Development A Redevelopment Weather Conditions: Sunny, warm, 90's Static Water Level (TOC): Sounded Depth (TOC): Post Development Water: Time: 0800 Initial: 18.14 ft Initial: 12.14 ft Time: 0802 Jar Photographed XYes Time: 0925 Final: 18.24 ft Final: 12.22 ft Time: 0927 □ No Development Start: Development Finish: *Measured Sediment Date: 8/29/95 Date: 8/29/95 Thickness in Jar: Time: 0810 Time: 0930 Development Method (Completely describe development method to include all equipment and procedures): Surged and pumped well with Well Wizard at 0.25 gpm. Misc. Notes: Submerged Volume Calculation: One Submerged 18.1 ft - 12.1 ft = 6.0 ft * 0.16 gal/ft = 0.96 galVolume: 0.96 gal pН Time Pump Volume Temp. Turb. Cond. D.O. Eh Remarks Removed Rate (°C) (gal) (ntu) (mV)) (Color, odor, etc.) (gpm) 0830 0.25 1.0 6.71 17.5 193.9 -3.8 16.0 0834 2.0 6.86 89.1 -12.60.25 7.01 15.9 0838 0.25 3.0 51.5 -18.70842 0.25 4.0 7.11 15.9 31.8 -23.415.7 0846 0.25 5.0 7.17 21.2 -26.2 0850 0.25 6.0 7.23 15.8 14.6 -28.7 Name: Tim Jensen and Carolyn Schwafel Firm: US Army Corps of Engineers Date: 8/29/95 Page of <u>2</u>

USACE WELL DEVELOPMENT RECORD SITE & WELL DATA Well Number: WT102A Project: Himco Dump Superfund Site Location: Elkhart, IN TOC Elevation: 769.09 **DEVELOPMENT DATA (CONT.)** Misc. Notes: Temp. Turb. Cond. D.O. Volume pН Eh Remarks Time Pump Rate Removed (°C) ``(gal) (ntu) (mV) (Color, odor, etc.) (gpm) 0854 0.25 7.0 7.26 16.2 11.3 -31.2 8.0 7.28 16.0 9.4 -31.4 0858 0.25 9.0 15.8 8.0 -30.9 0902 0.25 7.26 0906 0.25 10.0 7.34 17.7 11.0 -34.8 well pumped dry, allow to 0910 recover 0920 7.32 16.0 10.3 -33.8 root fibers found in water 0.25 11.0 and in pump Firm: US Army Corps of Engineers Name: Tim Jensen and Carolyn Schwafel

Date: 8/29/95

USACE, Omaha District. Form Develop2.95

Page |

				SI	TE & W	ELL DA	ГА			
Project	: Himco Di	ımp Superfun	d Site			Well Nu	mber: WT1	02B		
Locatio	on: Elkhart,	IN				TOC Ele	vation: 76	8.82		
Well C	oordinates:	N. 1534872.	79 E	. 405939.79)	Ground	Elevation:	766.4		
Date V	Vell Installe	ed: 12/2/90				Installed	Well Dept	h (TOC):	67.91'	
Date V	Vell Develo	ped: 8/28/95				Screened	Interval (TOC): 62.	91' to 67.9	1'
Fluid I	∠osses Duri	ng Drilling: }	N/A			Casing D	iameter: 2	.0" Stainle	ss Steel	
	.			DE	VELOPM	IENT DA	ATA .			
□ Initi	al Developr	nent 🗷	Redevel	opment		Weather	Condition	s: Sunny,	warm, 90's	
Initial	Water Leve : 11.77 ft : 11.8 ft	Tin	ne: <u>1430</u> ne: <u>1542</u>		Sounded Initial: <u>(</u> Final: <u>6</u>		OC): Time: <u>143</u> Time: <u>15</u>			elopment Water: hotographed AYes
Date:	pment Star 8/28/95 : 1450	t:			Developm Date: 8 Time: 1		:			sured Sediment ness in Jar:
Misc. I	Notes:									
		ne Calculation 55.5 ft * 0.16		8.9 gal			- 	·	•	One Submerged Volume: 8.9 gal
	- 11.8 ft = Pump Rate	Volume Removed		Temp.	Turb.	Cond.	D.O.	Eh	-	Volume: 8.9 gal Remarks
67.3 ft Time	Pump Rate (gpm)	Volume Removed (gal)	gal/ft =	Temp.	(ntu)	(mV)	D.O.		-	Volume: 8.9 gal
67.3 ft Time	Pump Rate (gpm) 1.0	Volume Removed	gal/ft =	Temp.				Eh	-	Volume: 8.9 gal
67.3 ft Time	Pump Rate (gpm)	Volume Removed (gal)	gal/ft = pH 7.07	Temp. (°C) 17.3	(ntu) 24.40	(mV) -18.0		Eh	-	Volume: 8.9 gal Remarks
67.3 ft Time 1504 1508 1512	Pump Rate (gpm) 1.0 1.0	Volume Removed (gal) 4.0 8.0	gal/ft = pH 7.07 7.21	Temp. (°C) 17.3 13.9	(ntu) 24.40 8.20	(mV) -18.0 -27.9		Eh	-	Volume: 8.9 gal
67.3 ft Time 1504 1508 1512 1516	Pump Rate (gpm) 1.0 1.0	Volume Removed (gal) 4.0 8.0	gal/ft = pH 7.07 7.21 7.33	Temp. (°C) 17.3 13.9 13.7	(ntu) 24.40 8.20 11.55	(mV) -18.0 -27.9 -32.1		Eh	-	Volume: 8.9 gal
67.3 ft Time 1504 1508	Pump Rate (gpm) 1.0 1.0	Volume Removed (gal) 4.0 8.0 12.0	gal/ft = pH 7.07 7.21 7.33 7.45	Temp. (°C) 17.3 13.9 13.7 14.0	(ntu) 24.40 8.20 11.55 9.20	(mV) -18.0 -27.9 -32.1 -37.5		Eh	-	Volume: 8.9 g Remarks

USACE WELL DEVELOPMENT RECORD SITE & WELL DATA Project: Himco Dump Superfund Site Well Number: WT102B **TOC Elevation: 768.82** Location: Elkhart, IN **DEVELOPMENT DATA (CONT.)** Misc. Notes: D.O. Volume pН Temp. Turb. Cond. Eh Pump Remarks Time Removed Rate (°C) (gpm) ``(gal) (ntu) (mV) (Color, odor, etc.) 7.62 13.4 -46.0 1.0 28.0 3.26 1528 7.62 13.7 -45.8 1532 1.0 32.0 1.54 1.0 36.0 7.60 13.9 4.00 -44.9 1536 Name: Tim Jensen and Carolyn Schwafel Firm: US Army Corps of Engineers Date: 8/28/95 Page __2 of __2_

USACE WELL DEVELOPMENT RECORD SITE & WELL DATA Project: Himco Dump Superfund Site Well Number: WT111A Location: Elkhart, IN TOC Elevation: 766.45 Well Coordinates: N. 1531905.43 E. 406358.78 Ground Elevation: 764.4 Date Well Installed: 9/10/91 Installed Well Depth (TOC): 22.0' Date Well Developed: 8/25/95 Screened Interval (TOC): 11.3' to 22.0' Fluid Losses During Drilling: N/A Casing Diameter: 2.0" Schedule 40 PVC **DEVELOPMENT DATA** Weather Conditions: Sunny, warm, 90's ☐ Initial Development **▼** Redevelopment Static Water Level (TOC): Sounded Depth (TOC): Post Development Water: Initial: 13.50 ft Time: 0815 Initial: 21.74 ft Time: 0817 Jar Photographed AYes Time: 0931 Final: 21.84 ft Time: 0933 Final: 13.53 ft □No Development Start: **Development Finish:** *Measured Sediment Date: 8/25/95 Date: 8/25/95 Thickness in Jar: Time: 0830 Time: 0935 Development Method (Completely describe development method to include all equipment and procedures): Surged and pumped well with Well Wizard at 1.25 gpm. Misc. Notes: Submerged Volume Calculation: One Submerged Volume: 1.3 gal 21.7 ft - 13.5 ft = 8.2 ft * 0.16 gal/ft = 1.3 galTime pΗ Temp. Turb. Cond. D.O. Eh Remarks Volume Pump Rate Removed (gpm) (°C) (mV) (Color, odor, etc.) (gal) (ntu) 5.72 14.5 >200 +55.9 0841 1.25 1.3 5.86 15.1 161.5 +47.7 0845 1.25 2.6 5.98 15.2 102.5 +40.7 0849 3.9 1.25 0853 1.25 5.2 5.93 13.9 79.0 +44.0 6.5 5.94 14.8 +43.0 0857 63.0 1.25 0901 5.92 14.5 49.9 +43.7 1.25 7.8 Firm: US Army Corps of Engineers Name: Tim Jensen and Carolyn Schwafel

(1) Date: 8/25/95

Signature:

of _2

USACE WELL DEVELOPMENT RECORD SITE & WELL DATA Well Number: WT111A Project: Himco Dump Superfund Site Location: Elkhart, IN **TOC Elevation: 766.45 DEVELOPMENT DATA (CONT.)** Misc. Notes: Turb. Cond. D.O. Volume pН Temp. Eh Remarks Time Pump Rate Removed (gpm) ۱۰(gal) (°C) (ntu) (mV) (Color, odor, etc.) 0905 9.1 5.94 15.0 40.6 +43.4 1.25 40.5 +41.4 0909 6.03 14.8 1.25 10.4 5.95 14.8 30.7 +42.4 0913 1.25 11.7 5.98 14.6 28.6 +40.4 0917 1.25 13.0 +39.3 6.00 14.7 24.2 0921 1.25 14.3 0925 1.25 15.6 5.99 14.7 24.3 +39.1 0929 16.9 6.10 14.8 24.8 +34.01.25

ignature: Znykm (audy Shughate: 8/25/95 Page 2 of 2

Firm: US Army Corps of Engineers

Name: Tim Jensen and Carolyn Schwafel

USACE WELL DEVELOPMENT RECORD SITE & WELL DATA Project: Himco Dump Superfund Site Well Number: WT112A TOC Elevation: 765.90 Location: Elkhart, IN Well Coordinates: N. 1533653.49 E. 406824.67 Ground Elevation: 763.6 Date Well Installed: 8/23/95 to 8/24/95 Installed Well Depth (TOC): 17.9' Date Well Developed: 8/26/95 Screened Interval (TOC): 7.7' to 17.7' Fluid Losses During Drilling: N/A Casing Diameter: 2.0" Schedule 40 PVC **DEVELOPMENT DATA** □ Redevelopment Weather Conditions: Warm, 80's, sunny ☒ Initial Development Sounded Depth (TOC): Post Development Water: Static Water Level (TOC): Initial: 11.24 feet **Time:** 1230 Initial: 17.84 ft Time: 1232 Jar Photographed X Yes Final: 11.40 feet Time: 1436 Final: 18.09 ft Time: 1438 □ No Development Start: **Development Finish:** *Measured Sediment Date: 8/26/95 Date: 8/26/95 Thickness in Jar:_ Time: 1436 Time: 1230 Development Method (Completely describe development method to include all equipment and procedures): Surged and pumped well with Well Wizard at 0.25 gpm. Misc. Notes: Submerged Volume Calculation: One Submerged 17.8 ft - 11.24 ft = 6.6 ft * 0.16 gal/min = 1.0 gal Volume: 1.0 gal Temp. Time Volume pН Turb. Cond. D.O. Eh Remarks Pump Rate Removed (°C) (mV)(Color, odor, etc.) (gal) (ntu) (gpm) 17.7 >200 -12.5 1.0 6.65 1324 0.25 17.2 0.25 2.0 6.94 125.6 -28.5 1328 3.0 7.02 17.0 77.4 -32.41332 0.25 4.0 7.16 17.0 54.9 -40.61336 0.25 5.0 7.25 17.2 31.7 -45.0 1340 0.25 0.25 6.0 7.30 17.2 51.0 -48.3 1344 Name: Tim Jensen and Michelle Benak Firm: US Army Corps of Engineers

Signature: Cin

ichelle Benat

Date: 8/26/95

of 2

SITE & WELL DATA

Project: Himco Dump Superfund Site Well Number: WT112A

Location: Elkhart, IN TOC Elevation: 765.90

DEVELOPMENT DATA (CONT.)

Misc. Notes:

Name: Tim Jensen and Michelle Benak

Signature: Michelle

Time	Pump Rate (gpm)	Volume Removed	рΉ	Temp.	Turb.	Cond.	D.O.	Eh	Remarks (Color, odor, etc.)
1348	0.25	7	7.35	17.2	44.5	-50.9			
1352	0.25	8	7.40	17.3	43.9	-53.8			
1356	0.25	9	7.45	17.1	28.6	-56.6			
1400	0.25	10	7.47	17.1	29.3	-57.6			
1404	0.25	11	7.51	17.0	18.6	-60.0			
1408	0.25	12	7.54	16.9	28.9	-61.2			
1412	0.25	13	7.54	16.8	18.2	-61.4			
1416	0.25	14	7.55	17.1	17.2	-62.1			
1420	0.25	15	7.55	17.0	15.3	-62.2			
									•
							<u> </u>		

Firm: US Army Corps of Engineers

Page 2

Date: 8/26/95

of <u>2</u>

USACE WELL DEVELOPMENT RECORD SITE & WELL DATA Project: Himco Dump Superfund Site Well Number: WT112B Location: Elkhart, IN TOC Elevation: 766.09 E. 406834.06 Well Coordinates: N. 1533653.01 Ground Elevation: 763.4 Date Well Installed: 8/23/95 to 8/24/95 Installed Well Depth (TOC): 62.3' Screened Interval (TOC): 57.1' to 62.1' Date Well Developed: 8/28/95 Casing Diameter: 2.0" Schedule 40 PVC Fluid Losses During Drilling: N/A **DEVELOPMENT DATA** □ Redevelopment Weather Conditions: Warm, sunny ▶ Initial Development Static Water Level (TOC): Sounded Depth (TOC): Post Development Water: Initial: 61.04 ft Initial: 11.53 feet Time: 0825 Time: 0828 Jar Photographed XYes Final: 11.66 feet Time: 0934 Final: 62.34 ft_ Time: 0936 □ No *Measured Sediment Development Start: Development Finish: Thickness in Jar: Date: 8/28/95 Date: 8/28/95 Time: 0940 Time: 0850 Development Method (Completely describe development method to include all equipment and procedures): Surged and pumped well with Well Wizard at 0.25 gpm. Misc. Notes: One Submerged Submerged Volume Calculation: 61.0 ft - 11.5 ft = 49.5 ft * 0.16 gal/ft = 7.9 = 8.0 galVolume: 8.0 gal Time Volume pН Temp. Turb. Cond. D.O. Eh Remarks Pump Rate Removed (gpm) (gal) (°C) (ntu) (mV)(Color, odor, etc.) 6.98 14.7 -22.8 0904 0.25 8.0 187.30 0908 0.25 16.0 7.20 12.7 27.30 -33.4 0912 0.25 24.0 7.29 12.4 9.38 -39.9 12.2 0.25 32.0 7.42 5.77 -46.6 0916 0920 0.25 40.0 7.54 12.0 3.33 -51.9 7.72 12.6 0924 0.25 48.0 2.65 -59.2Name: Tim Jensen and Carolyn Schwafel Firm: US Army Corps of Engineers Date: 8/28/95

of <u>2</u>

USACE WELL DEVELOPMENT RECORD SITE & WELL DATA Well Number: WT112B Project: Himco Dump Superfund Site TOC Elevation: 766.09 Location: Elkhart, IN **DEVELOPMENT DATA (CONT.)** Misc. Notes: Turb. Cond. D.O. Pump Volume pН Temp. Eh Remarks Time Rate Removed (°C) (ntu) (mV)(Color, odor, etc.) (gpm) ··(gal)) -62.9 0928 0.25 56.0 7.78 12.2 1.65 0932 0.25 64.0 7.78 12.8 1.56 -63.3

Name: Tim Jensen and Carolyn Schwafel Firm: US Army Corps of Engineers

Signature: Timber Audin Study Date: 8/28/95 Page 2 of 2

		US	ACE	E WEI	LL DE	VEL(DPMI	ENT F	ECO.	RD
				SI	TE & W	ELL DA'	ТА			
Project: H	limco Dı	ımp Superfun	d Site			Well Nu	mber: WT	113A		
Location:	Elkhart,	IN				TOC Ele	evation: 77	71.85		
Well Coor	rdinates	N. 1533608.	69 E	. 407789.1	1	Ground	Elevation:	769.2		
Date Well	Installe	ed: 8/10/95 to	8/11/95			Installed	Well Dep	th (TOC):	24.6'	
Date Well	Develo	ped: 8/22/95				Screened	Interval	(TOC): 14	.4' to 24.4'	
Fluid Loss	ses Duri	ng Drilling:	Unknowr	1		Casing D	Diameter: 1	2.0" Sched	ule 40 PVC	·
				DE	VELOPN	MENT DA	ATA			
⅓ Initial I)evelopr	nent 🛭	Redevel	opment		Weather	Condition	ıs: Warm,	Sunny 90's	
Static Wa Initial: 18 Final:		Т	`ime: <u>08</u> me:	12		Depth (TC 24.54 ft		815		elopment Water: hotographed 风Yes 口 No
Developme Date: 8/2 Time: 08	22/95	t:			Developm Date: 8 Time: (:		Į.	sured Sediment ness in Jar:
Misc. Note	es:	.,,,		. .						
		ne Calculation 6.3 ft * 0.16 g		.0 gal						One Submerged Volume: 1.0 gal
	Pump Rate (gpm)	Volume Removed (gal)	pН	Temp.	Turb.	Cond.	D.O.	Eh ()	(Co	Remarks
0916 0.	.5	0	7.38	18.5	>200	-36.5				
0920 0.	.5	2	7.47	16.2	>200	-40.8				
0924 0.	.5	4	7.51	16.0	90.0	-38.9				
0928 0.	.5	6	7.65	15.8	69.5	-49.5				-
0932 0.	.5	8	7.78	15.7	49.0	-56.2				
0936 - 0.	.5	10	7.81	15.7	34.5	-58.7				
Name: Tir	n Jensen	and Carolyn	Schwafe	1	Firm: US	S Army Co	rps of Eng	ineers		
Signature	Tim	Kun	-Cawl	pr. Fluor	/)Date: 8/2	22/95		Page _	1 of <u>2</u>	<u> </u>

USACE WELL DEVELOPMENT RECORD SITE & WELL DATA Well Number: WT113A Project: Himco Dump Superfund Site Location: Elkhart, IN **TOC Elevation:** 771.85 **DEVELOPMENT DATA (CONT.)** Misc. Notes: pН D.O. Volume Temp. Turb. Cond. Eh Remarks Time Pump Rate Removed (gpm) (°C) (ntu) (mV)(Color, odor, etc.) · ·(gal) 7.86 15.8 34.5 -61.0 0940 0.5 12 0944 0.5 14 7.86 15.8 28.9 -61.0 Name: Tim Jensen and Carolyn Schwafel Firm: US Army Corps of Engineers

Date: 8/22/95

of <u>2</u>

USACE WELL DEVELOPMENT RECORD SITE & WELL DATA Project: Himco Dump Superfund Site Well Number: WT113B TOC Elevation: 772.06 Location: Elkhart, IN Well Coordinates: N. 1533604.43 E. 407779.02 Ground Elevation: 769.3 Installed Well Depth (TOC): 70.2' **Date Well Installed:** 8/10/95 to 8/11/95 Screened Interval (TOC): 65.0' to 70.0' Date Well Developed: 8/21/95 Fluid Losses During Drilling: Unknown Casing Diameter: 2.0" Schedule 40 PVC **DEVELOPMENT DATA** 风 Initial Development □ Redevelopment Weather Conditions: Sunny, warm, 90's Sounded Depth (TOC): Static Water Level (TOC): Post Development Water: Initial: 18.38 feet Time: 0855 Initial: 70.44 ft Time: 0858 Jar Photographed MYes Final: 18.42 feet Time: 1600 Final: 70.44 ft Time: 1602 □ No Development Start: Development Finish: *Measured Sediment Date: 8/21/95 Date: 8/21/95 Thickness in Jar: Time: 1558 Time: 1010 Development Method (Completely describe development method to include all equipment and procedures): Surged and pumped well with Well Wizard at 1.5 gpm. Misc. Notes: Turbidity meter not working due to battery failure. Submerged Volume Calculation: One Submerged 70.4 ft - 18.4 ft = 52.0 ft * 0.16 gal/ft = 8.3 gal Volume: 8.3 gal pН Volume Temp. Turb. Cond. D.O. Eh Remarks Time Pump Rate Removed (gpm) (gal) (°C) (ntu) (mV)) (Color, odor, etc.) >7.0 0 Recalibrated Instrument 1010 1.5 -32.2 10 7.54 16.4 Gray due to sediment 1018 1.5 N/A Ceased pumping 1020 Resumed pumping 1452 ------------------------16.6 20 7.44 N/A -36.4 1510 1.5 7.33 13.8 N/A -30.71516 1.5 30 Name: Tim Jensen and Carolyn Schwafel Firm: US Army Corps of Engineers Date: 8/21/95 Page Signature: of 2

SITE & WELL DATA

Project: Himco Dump Superfund Site Well Number: WT113B

Location: Elkhart, IN TOC Elevation: 772.06

DEVELOPMENT DATA (CONT.)

Misc. Notes:

Turbidity meter not working due to battery failure

Time	Pump Rate (gpm)	Volume Removed (gal)	pН	Temp.	Turb. (ntu)	Cond.	D.	O.) (Ch)	Remarks (Color, odor, etc.)
1522	1.5	40	7.19	14.0	N/A	-28.5	<u> </u>				
1528	1.5	50	7.54	13.3	N/A	-41.5					
1534	1.5	60	7.58	15.6	N/A	-43.4					
1540	1.5	70	7.52	13.4	N/A	-37.9					
1546	1.5	80	7.51	13.2	N/A	-41.0					
1552	1.5	90	7.41	13.2	N/A	-37.1			,		
											••
											·
					·						
Name:	Tim Jenser	and Carolyn	Schwafe		Firm: US	S Army Co	rps of	Engi	neers		

Date: 8/21/95

of <u>2</u>

	•	US	SACI	E WEI	LL DE	EVEL(DPMF	ENT I	RECO	RD
				SI	TE & W	ELL DA	ГА			
Projec	t: Himco D	ump Superfur	nd Site			Well Nu	mber: WT	114A		
Locati	on: Elkhart,	, IN				TOC Ele	vation: 76	9.19		
Well (Coordinates	: N. 1531843	.97 E	E. 407997.29)	Ground	Elevation:	766.7		
Date V	Vell Install	ed: 8/21/95 to	8/22/95			Installed	Well Dep	th (TOC):	24.7'	
Date V	Well Develo	ped: 8/26/95				Screened	Interval (TOC): 14	.5' to 24.5'	
Fluid	Losses Duri	ing Drilling:	N/A			Casing D	iameter: 2	2.0" Sched	ule 40 PVC	
				DE	VELOPN	MENT DA	ATA			
其 Initi	ial Develop	ment 🗆	Redevel	lopment		Weather	Condition	s: Sunny,	warm, 90's	
Initia	Water Level: 17.55 feet	Time:	0725 : 0905			Depth (TC 24.84 ft 4.39 ft	OC): Time: <u>07</u> Time: <u>09</u>			elopment Water: hotographed ¥Yes □ No
Date	opment Star : 8/26/95 :: 0800	rt: 			Developr Date: Time:_		:			sured Sediment ness in Jar:
Misc. I	Notes:									· · · · · · · · · · · · · · · · · · ·
		ne Calculatio 7.2 ft * 0.16		.1 gal					- <u>-</u>	One Submerged Volume: 1.1 gal
Time	Pump Rate (gpm)	Volume Removed (gal)	pН	Temp.	Turb. (ntu)	Cond.	D.O.	Eh ()	(Co	Remarks
0804	0.3	1.1	6.97	15.3	>200	-18.2		<u> </u>	<u> </u>	
0808	0.3	2.2	6.95	14.8	>200	-20.0	·			
0812	0.3	3.3							No sampl	e taken
0816	0.3	4.4	6.97	14.2	>200	-20.6				
0820	0.3	5.5	6.85	14.7	112.4	-15.1				
0824	0.3	6.6	7.01	14.2	>200	-23.4				
Name:	Tim Jenser	and Michelle	Benak	•	Firm: US	S Army Cor	ps of Engi	neers		-
		Q min		R. L				Page	1 of 2	

SITE & WELL DATA

Project: Himco Dump Superfund Site	Well Number: WT114A
Location: Elkhart IN	TOC Elevation: 769 19

DEVELOPMENT DATA (CONT.)

Mico	Notes:
IVIISC.	MOLES:

Name: Tim Jensen and Michelle Benak

Signature: Michelle Block

Time	Pump Rate (gpm)	Volume Removed	pН	Temp.	Turb. (ntu)	Cond.	D.O .	Eh	Remarks (Color, odor, etc.)
0828	0.3	7.7	7.08	14.1	>200	-27.1			
0832	0.3	8.8	7.09	14.0	120.2	-28.0			
0836	0.3	9.9	7.11	14.1	65.8	-28.8			
0840	0.3	11.0	7.11	14.0	49.7	-28.3			
0844	0.3	12.1	7.14	14.0	30.9	-30.3			
0848	0.3	13.2	7.11	14.1	21.7	-27.8			
0852	0.3	14.3	7.12	14.2	16.1	-28.1			
0856	0.3	15.4	7.12	14.0	12.8	-27.9			
									•

Firm: US Army Corps of Engineers

Page _

Date: 8/26/95

USACE, Omaha District. Form Develop2.95

of <u>2</u>

		US	SACI	E WEI	LL DE	EVEL	OPMIE	ENT I	RECO	RD
				SI	TE & W	ELL DA	TA			
Project:	Himco D	ump Superfur	nd Site			Well Nu	mber: WT	114B		
Location	: Elkhart,	IN				TOC Ele	evation: 76	59.37		
Well Cod	ordinates	: N. 1531834	.38 E	E. 407995.7	1	Ground	Elevation:	766.9		
Date We	ll Installe	ed: 8/22/95 to	8/23/95			Installed	Well Dep	th (TOC):	68.0'	
Date We	ll Develo	ped: 8/26/95				Screened	Interval ((TOC): 6	2.8' to 67.8	,
Fluid Lo	sses Duri	ing Drilling:	N/A			Casing I	Diameter: 2	2.0" Sched	ule 40 PVC	
•				DE	VELOPN	MENT DA	ATA			
■ Initial	Develop	nent 🗆	Redeve	opment		Weather	Condition	ıs: Sunny,	warm, 90's	
-	ater Leve 17.63 fee 17.90 feet	t Tim	e: <u>0912</u> ne: <u>1123</u>			Depth (TC 67.84 ft 8.12 ft	OC): Time: <u>09</u> Time: <u>11</u>			relopment Water: hotographed 英 Yes 口 No
Developm Date: 8 Time: 0	/26/95	rt: 👯			Developi Date:_ Time:_		1:			sured Sediment eness in Jar:
Misc. No		ne Calculatio	n							One Submerged
		50.2 ft * 0.16		8.0 gal						Volume: 8.0 gal
Ì	Pump Rate (gpm)	Volume Removed (gal)	pН	Temp.	Turb.	Cond.	D.O.	Eh	(Co	Remarks
	2.0	8.0	6.58	15.4	16.3	-2.9				
	2.0	16.0	6.80	15.2	11.5	-10.8				<u> </u>
	2.0	24.0	6.96	17.9	26.2	-22.0				
_	2.0	32.0	6.95	15.2	14.1	-19.1				
1054 2	2.0	40.0	6.99	14.2	3.9	-20.0				
1058 2	2.0	48.0	6.85	14.9	7.4	-13.6				<u> </u>
Name: Ti	im Jensen	and Michelle	: Benak		Firm: US	S Army Co	rps of Engi	neers -	•	· · ·
Signature	-10	ens M		Bonst	Date: 8/2			1	1 of _	

		US	SACI	E WEI	LL DE	EVELO	DPME	NT I	RECO	RD
				SI	TE & W	ELL DA	TA			
Projec	t: Himco D	ump Superfur	ıd Site			Well Nu	mber: WT	115A		
Locati	on: Elkhart,	IN				TOC Ele	evation: 76	5.87		
Well (Coordinates	: N. 1531675	.84 E	E. 407261.44	4	Ground	Elevation:	763.6		
Date V	Well Installe	ed: 8/22/95 to	8/23/95			Installed	Well Dept	th (TOC):	19.9'	
Date V	Well Develo	ped: 8/24/95			_	Screened	Interval (TOC): 9.	7' to 19.7'	
Fluid	Losses Duri	ing Driffing:	N/A			Casing D)iameter: 2	.0" Sched	ule 40 PVC	
				DE	VELOPN	MENT DA	ATA			
Initi	ial Developi	ment 🗆	Redeve	opment		Weather	Condition	s: Sunny,	warm	
Initia	Water Leve l: 13.8 ft	Time:	1330		Initial:_	Depth (TC 19.74 ft				elopment Water: hotographed XYes □ No
Date:	pment Star : 8/24/95 :: 1335	rt:			Developi Date:_ Time:_		1:		l .	sured Sediment ness in Jar:
Misc. I	Notes:									
		ne Calculatio 5.9 ft * 0.16		0.9 = 1.0 ga	l				••	One Submerged Volume: 1.0 gal
Time	Pump Rate (gpm)	Volume Removed (gal)	рН	Temp.	Turb. (ntu)	Cond.	D.O.	Eh	(Co	Remarks
1353	0.25	1.0	7.44	17.7	>200	-35.8				
1357	0.25	2.0	7.41	17.1	>200	-34.9				
1401	0.25	3.0	7.46	20.3	>200	-38.9			pumped	dry after 3 well
1405	0								volumes,	allowed to recover
1434	0.25	4.0	7.96	19.8	>200	-60.5				
1438	0.25	5.0	7.81	16.8	>200	-54.3				
==== Name:	Tim Jenser	and Carolyn	Schwafe	1	Firm: U	S Army Co	rps of Engi	neers -		
Signat	ure: 7 ()	en fai	19/100	C. B. radio	Date: 8/2	 24/95		Page	1 of 3	3

SITE & WELL DATA

Project: Himco Dump Superfund Site Well Number: WT115A

Location: Elkhart, IN TOC Elevation: 765.87

DEVELOPMENT DATA (CONT.)

Misc. Notes:

Time	Pump Rate	Volume Removed	pН	Temp.	Turb.	Cond.	D.O.	Eh	Remarks
	(gpm)	' '(gal)		(°C)	(ntu)	(mV)	()	()	(Color, odor, etc.)
1442	0.25	6.0	7.73	17.0	>200	-50.4			
1446	0.25	7.0	7.66	16.9	>200	-46.6			
1450	0.25	8.0	7.55	16.9	>200	-41.9			
1454	0.25	9.0	7.53	15.9	>200	-40.3			
1458	0.25	10.0	7.50	16.4	>200	-39.2			
1502	0.25	11.0	7.53	16.3	>200	-40.1			
1506	0.25	12.0	7.50	16.0	>200	-39.5			
1510	0.25	13.0	7.49	15.6	>200	-38.8			
1514	0.25	14.0	7.51	15.9	>200	-39.9			
1518	0.25	15.0	7.51	16.0	>200	-39.8			•.
1522	0.25	16.0	7.56	15.0	>200	-41.9			
1526	0.25	17.0	7.61	14.7	>200	-44.6			
1530	0.25	18.0	7.52	15.0	>200	-41.0			
1534	0.25	19.0	7.54	14.6	>200	-41.5			
1538	0.25	20.0	7.59	14.6	>200	-43.6			
1542	0.25	21.0	7.62	14.7	>200	-45.1			
1546	0.25	22.0	7.65	14.5	>200	-46.6			
1550	0.25	23.0	7.67	14.6	>200	-47.2			
1554	0.25	24.0	7.52	14.9	>200	-40.7			
Name:	Tim Jenser	and Carolyn	Schwafe	1	Firm: US	S Army Co	rps of Engi	neers	

Date: 8/24/95

USACE, Omaha District. Form Develop2.95

of _3

USACE WELL DEVELOPMENT RECORD SITE & WELL DATA Project: Himco Dump Superfund Site Well Number: WT115A TOC Elevation: 765.87 Location: Elkhart, IN **DEVELOPMENT DATA (CONT.)** Misc. Notes: D.O. Time Pump Volume pH Temp. Turb. Cond. Eh Remarks Rate Removed (°C) ''(gal) (ntu) (mV)(Color, odor, etc.) (gpm) 7.56 14.8 >200 25.0 -42.8 1558 0.25 1602 0.25 26.0 7.61 15.0 >200 -44.6 >200 7.61 14.8 -44.4 1606 0.25 27.0 1610 0.25 28.0 7.60 15.1 163.2 -44.5 15.1 169.9 -42.7 29.0 7.57 1614 0.25 7.61 14.8 135.7 1618 0.25 30.0 -44.6 7.65 15.1 111.2 -46.6 1622 0.25 31.0 7.69 14.9 136.5 -48.6 1626 0.25 32.0 15.0 130.5 -47.5 7.68 1630 0.25 33.0 1634 0.25 34.0 7.68 14.7 182.8 -47.5 7.69 1638 0.25 35.0 14.4 166.7 -47.6 7.69 14.2 1642 0.25 36.0 161.5 -48.1 7.71 14.2 144.7 -49.3 1646 0.25 37.0 7.70 14.5 145.1 -48.7 1650 0.25 38.0 39.0 7.69 14.4 125.5 -48.2 1654 0.25 7.67 1658 40.0 14.8 166.1 -47.5 0.25

Name: Tim Jensen and Carolyn Schwafel

Firm: US Army Corps of Engineers

Signature: Zin Sen Couly Shugfor

Date: 8/24/95

Page <u>3</u> of <u>3</u>

				~	THE A TY	THE F	TC 4			
			<u></u>	SI	TE & W	ELL DA	I'A			
Projec	t: Himco Di	ump Superfun	d Site			Well Nu	mber: WT	116A		
Locati	on: Elkhart,	IN				TOC Ele	vation: 76	3.86		
Well C	Coordinates:	N. 1531925.	50 E	. 406784.96	5	Ground	Elevation:	761.7		
Date V	Vell Installe	ed: 8/17/95 to	8/18/95			Installed	Well Dept	h (TOC):	15.0'	
Date V	Vell Develor	ped: 8/23/95				Screened	Interval (TOC): 4.8	' to 14.8'	
Fluid 1	Losses Duri	ng Drilling: 1	N/A			Casing D	iameter: 2	.0" Schedi	ale 40 PVC	
				DE	VELOPN	MENT DA	ATA			
=	al Developr	nent 🗆	Redevel	opment		Weather	Condition	s: Sunny,	90's	
Initia	Water Level: 6.03 feet	Time:					OC): Time: <u>100</u> 2 Fime:			elopment Water: hotographed ∑Yes □ No
Date:	pment Star 8/23/95 : 1015	t:,			Developi Date:_8 Time:_		:		l .	sured Sediment ness in Jar:
Misc. 1	Notes:									
Subme	erged Volun	ne Calculatio 0.9 ft * 0.16		.74 gal					•	One Submerged Volume: 1.74 gal
Subme	erged Volun			.74 gal Temp.	Turb.	Cond.	D.O.	Eh		
Subme 16.9 ft	rged Volum - 6.0 ft = 1 Pump Rate	Volume Removed	gal/ft = 1	Temp.					(Co	Volume: 1.74 gal Remarks
Subme 16.9 ft Time	Pump Rate (gpm)	Volume Removed (gal)	gal/ft = 1 pH	Temp.	(ntu)	(mV)			(Co	Volume: 1.74 gal Remarks lor, odor, etc.) I2S gas, black
Subme 16.9 ft Time	Pump Rate (gpm)	Volume Removed (gal)	pH 7.20	Temp. (°C) 22.7	(ntu) >200	(mV)			(Co odor of H	Volume: 1.74 gal Remarks lor, odor, etc.) I2S gas, black
Subme 16.9 ft Time 1020 1024	Pump Rate (gpm)	Volume Removed (gal) 0.7	pH 7.20 7.33	Temp. (°C) 22.7 20.2	(ntu) >200 >200	(mV) -23.4 -32.7			odor of H rotten egg adjust pur	Volume: 1.74 gal Remarks lor, odor, etc.) I2S gas, black gs odor
Subme 16.9 ft Time 1020 1024	Pump Rate (gpm) 0.7 0.7	Volume Removed (gal) 0.7 1.4 2.1	pH 7.20 7.33 7.18	Temp. (°C) 22.7 20.2 21.5	(ntu) >200 >200 >200 >200	(mV) -23.4 -32.7 -24.2			odor of H rotten egg adjust pur	Volume: 1.74 gal Remarks lor, odor, etc.) I2S gas, black gs odor mping rate
Subme 16.9 ft Time 1020 1024 1028	Pump Rate (gpm) 0.7 0.7 0.7	Volume Removed (gal) 0.7 1.4 2.1	pH 7.20 7.33 7.18	Temp. (°C) 22.7 20.2 21.5	(ntu) >200 >200 >200 >200	(mV) -23.4 -32.7 -24.2			odor of H rotten egg adjust pur	Volume: 1.74 gal Remarks lor, odor, etc.) I2S gas, black gs odor mping rate
Subme 16.9 ft Time 1020 1024 1028	Pump Rate (gpm) 0.7 0.7 0.05 0.05	Volume Removed (gal) 0.7 1.4 2.1	pH 7.20 7.33 7.18 6.84 6.72	Temp. (°C) 22.7 20.2 21.5 29.8 30.7	(ntu) >200 >200 >200 >200 >200 92.1	(mV) -23.4 -32.7 -24.2	()	()	odor of H rotten egg adjust pur	Volume: 1.74 gal Remarks lor, odor, etc.) I2S gas, black gs odor mping rate

USACE WELL DEVELOPMENT RECORD SITE & WELL DATA Project: Himco Dump Superfund Site Well Number: WT116A TOC Elevation: 763.86 Location: Elkhart, IN **DEVELOPMENT DATA (CONT.)** Misc. Notes: It will not be possible to develop well much more due to the long cycle time and relatively long residence time in hose bundle. Water in the hose bundle warms up between cycles because on 10 feet of the 50 feet of hose in bundle is below ground. Cycles are set at 10 minute intervals to allow well to recover as it is being pumped. Time Pump Volume pН Temp. Turb. Cond. D.O. Eh Remarks Removed Rate ' '(gal) (°C) (ntu) (mV)(gpm) (Color, odor, etc.) 3.5 6.89 23.5 41.5 -8.6 1238 0.05

ignature: Internal (away Church Date: 8/23/95 Page 2 of 2

Firm: US Army Corps of Engineers

Name: Tim Jensen and Carolyn Schwafel

***************************************			ACI	C WEI	אלו עני	· v EL	JYWIJ	TINT F	ŒCO.	KD	
				SI	TE & W	ELL DA	ŢA				
Projec	t: Himco D	ump Superfun			Well Number: WT116B						
Location: Elkhart, IN Well Coordinates: N. 1531931.04 E. 406775.79							TOC Elevation: 763.89				
Well (Coordinates	: N. 1531931.	04 E	E. 406775.79	9	Ground	Elevation	: 761.9			
Date V	Well Installe	ed: 8/17/95 to	8/18/95)		Installed	Well Dep	oth (TOC):	60.6'		
Date V	Well Develo	ped: 8/23/95				Screened	Interval	(TOC): 55	.4' to 60.4'	· · · · · · · · · · · · · · · · · · ·	
Fluid	Losses Duri	ng Drilling:	Unknowi	1		Casing D	Diameter:	2.0" Sched	ule 40 PVC		
				DE	VELOPN	MENT DA	ATA				
📜 Initi	ial Developi	nent 🗆	Redevel	opment		Weather	Condition	ns: Sunny,	warm, 90's	3	
Static Water Level (TOC): Initial: 11.02 ft Time: 0740 Initia						Depth (TOC): Post				velopment Water: hotographed ≰Yes □ No	
Date	opment Star : 8/23/95 :: 0800	t: **			Developr Date: 8		1:		i .	*Measured Sediment Thickness in Jar:	
Misc.	Notes:										
		ne Calculatio 49.6 ft * 0.16		7.94 = 8.0	gal				٠.	One Submerged Volume: 8.0 gal	
Time	Pump Rate (gpm)	Volume Removed (gal)	pН	Temp.	Turb.	Cond.	D.O.	Eh ()	(Co	Remarks	
0841	2.0	8.0	7.56	13.1	39.4	-43.7					
0845	2.0	16.0	7.56	12.3	53.9	-43.7					
0849	2.0	24.0	7.58	12.3	14.9	-45.0					
0853	2.0	32.0	7.52	12.3	12.3	-42.3					
Name:	Tim Jenser	and Carolyn	Schwafe	1	Firm: U	S Army Co	rps of Eng	ineers	-		
	ure: Zi		1	Cole	/)Date: 8/2	22/05		Page	1 of	1	

		US	ACE	WEI	LL DE	VEL(OPME	NT F	RECO	RD	
			 	SI	TE & W	ELL DA	TΑ				
Projec	t: Himco D	ump Superfun		Well Number: WT117A							
Location: Elkhart, IN							TOC Elevation: 767.19				
Well Coordinates: N. 1532201.98 E. 405908.93 Date Well Installed: 8/15/95 to 8/17/95							Elevation:	764.8			
Date V	Vell Installe	ed: 8/15/95 to	8/17/95			Installed	Well Dep	th (TOC):	18.1'		
Date V	Vell Develo	ped: 8/22/95			Screened	Interval (TOC): 7.9)' to 17.9'			
Fluid 1	Losses Duri	ng Drilling: 1	Unknowr	1		Casing D)iameter: 2	2.0" Sched	ule 40 PVC		
				DE	VELOPN	MENT DA	ATA				
💢 Initi	al Developi	nent 🗆	Redevel	opment		Weather	Condition	s: Sunny,	warm, 90's		
Static Water Level (TOC): Initial: 13.79 ft Time: 1032 Initia						Depth (TC	OC): Time: <u>10</u> Time:			elopment Water: hotographed ∠Yes □ No	
Date:	pment Star : 8/22/95 :: 1040	rt:			Developr Date: <u>8</u> Time: _		1:		1	sured Sediment ness in Jar:	
Misc. I	Notes:										
		ne Calculatio 4.4 ft * 0.16		.7 gal					۰,	One Submerged Volume: 0.7 gal	
Time	Pump Rate (gpm)	Volume Removed (gal)	pН	Temp.	Turb.	Cond.	D.O.	Eh	(Co	Remarks	
1102	0.7	2.8	7.23	22.1	>200	-23.3					
1106	0.7	5.6	7.45	19.8	>200	-37.7					
1110	0.7	8.4	7.57	19.6	>200	-42.0					
1114	0.7	11.2	7.63	19.4	>200	-44.2					
1118	0.7	14.0	7.68	19.6	>200	-49.0					
1122	0.7	16.8	7.72	19.4	>200	-50.4					
		and Carolyn	Schwafe	1	Firm: U	S Army Cor	rps of Engi	neers	<u>'</u>		
		Den Cl							1 of 2	<u> </u>	

SITE & WELL DATA

Project: Himco Dump Superfund Site

Well Number: WT117A

Location: Elkhart, IN

TOC Elevation: 767.19

DEVELOPMENT DATA (CONT.)

Misc. Notes:

Time	Pump Rate (gpm)	Volume Removed	pН	Temp.	Turb. (ntu)	Cond.	D.O.	Eh	Remarks (Color, odor, etc.)
1126	0.7	19.6	7.76	20.0	>200	-52.0	,		(Color, duor, etc.)
1130	0.7	22.4	7.75	19.9	>200	-52.7			lift pump to accomodate 0.35
1134	0.35	23.8	7.80	20.4	>200	-54.7			gpm rate after 32 well vols.
1138	0.35	25.2	7.86	21.6	>200	-57.5			
1142	0.35	26.6	7.86	20.7	>200	-57.2			
1146	0.35	28.0	7.86	20.8	>200	-58.2			
1150	0.35	29.4	7.85	21.1	>200	-56.8			
1154	0.35	30.8	7.83	21.3	>200	-56.9			
1158	0.35	32.2	7.87	21.3	>200	-57.9			ceased pumping at 1158
1301	0.35	33.6	7.32	27.9	>200	-31.2			resumed at 1258
1305	0.35	35.0	7.54	21.7	>200	-41.9			
1309	0.35	36.4	7.61	20.5	>200	-43.6	,		
1413	0.35	37.8	7.63	20.1	>200	-44.5			
1417	0.35	39.2	7.66	20.0	>200	-46.6			
1421	0.35	40.6	7.67	19.6	>200	-47.3			ceased pumping can not get
									turbidity to decrease

Signature: Implimation Church Date: 8/22/95 Page 2 of 2

Firm: US Army Corps of Engineers

Name: Tim Jensen and Carolyn Schwafel

										RD
				SI	TE & W	ELL DA	ТА			
Projec	t: Himco D	ump Superfun	d Site			Well Nu	mber: WT	`117B		
Locati	on: Elkhart,	IN				TOC Ele	evation: 76	6.6		
Well (Coordinates	: N. 1532202.	51 E	. 405896.4	1	Ground	Elevation:	764.4		
Date V	Well Installe	ed: 8/14/95 to	8/17/95			Installed	Well Dept	th (TOC):	63.7'	
Date V	Well Develo	ped: 8/22/95				Screened	Interval (TOC): 58.	5' to 63.5'	
Fluid :	Losses Duri	ng Drilling:	Unknowi	1		Casing I	Diameter: 2	.0" Schedi	ıle 40 PVC	
				DE	VELOPN	MENT DA	ATA			
⋈ Initi	ial Developi	ment 🗆	Redevel	opment		Weather	Condition	s: Sunny,	warm, 90's	
Initia	Water Level: 13.21 ft	el (TOC): Time: Time:		Initial:_	Sounded Depth (TOC): Initial: 63.74 ft Time: 1426 Final: 63.74 ft Time: 1511 Jar Photograph					
Date	pment Star : 8/22/95 :: 1428	t: **			Developi Date: _8 Time: _		1:			sured Sediment ness in Jar:
Misc. I	Notes:									<u> </u>
Subme	erged Volun	ne Calculatio 50.5 ft * 0.16	n: gal/ft =	8.1 gal					••	One Submerged Volume: 8.1 gal
Subme	erged Volun	ne Calculatio 50.5 ft * 0.16 Volume Removed (gal)	n: gal/ft = pH	8.1 gal Temp. (°C)	Turb.	Cond.	D.O.	Eh		
Subme 63.7 ft	erged Volum - 13.2 ft = Pump Rate	Volume Removed	gal/ft =	Temp.						Volume: 8.1 gal Remarks
Subme 63.7 ft Time	Pump Rate (gpm)	Volume Removed (gal)	gal/ft =	Temp.	(ntu)	(mV)				Volume: 8.1 gal Remarks
Subme 63.7 ft Time	Pump Rate (gpm)	Volume Removed (gal)	gal/ft = pH 7.85	Temp. (°C) 15.8	(ntu) 38.1	(mV) -57.3				Volume: 8.1 gal Remarks
Subme 63.7 ft Time 1431 1435	Pump Rate (gpm) 2.0	Volume Removed (gal) 8.0	gal/ft = pH 7.85 7.86	Temp. (°C) 15.8 14.7	(ntu) 38.1 13.2	(mV) -57.3 -57.0				Volume: 8.1 gal Remarks
Subme 63.7 ft Time 1431 1435 1439	Pump Rate (gpm) 2.0 2.0	Volume Removed (gal) 8.0 16.0 24.0	gal/ft = pH 7.85 7.86 7.93	Temp. (°C) 15.8 14.7 13.9	(ntu) 38.1 13.2 130.6	(mV) -57.3 -57.0 -60.0				Volume: 8.1 gal Remarks
Subme 63.7 ft Time 1431 1435 1439 1443	Pump Rate (gpm) 2.0 2.0 2.0	Volume Removed (gal) 8.0 16.0 24.0	gal/ft = pH 7.85 7.86 7.93 7.73	Temp. (°C) 15.8 14.7 13.9 14.1	(ntu) 38.1 13.2 130.6 13.2	(mV) -57.3 -57.0 -60.0 -50.5				Volume: 8.1 gal Remarks
Subme 63.7 ft Time 1431 1435 1439 1443 1447	Pump Rate (gpm) 2.0 2.0 2.0 2.0 2.0	Volume Removed (gal) 8.0 16.0 24.0 32.0 40.0	gal/ft = pH 7.85 7.86 7.93 7.71 7.65	Temp. (°C) 15.8 14.7 13.9 14.1 13.8 14.2	(ntu) 38.1 13.2 130.6 13.2 5.5 3.8	(mV) -57.3 -57.0 -60.0 -50.5 -47.7	()	()		Volume: 8.1 gal Remarks

USACE WELL DEVELOPMENT RECORD SITE & WELL DATA Well Number: WT117B Project: Himco Dump Superfund Site **TOC Elevation:** 766.6 Location: Elkhart, IN **DEVELOPMENT DATA (CONT.)** Misc. Notes: pН Time Volume Temp. Turb. Cond. D.O. Eh Remarks Pump Rate Removed (°C) (mV) (Color, odor, etc.) (ntu) (gpm) 📆 (gal) 7.67 14.2 3.3 -44.1 1455 2.0 56.0 Firm: US Army Corps of Engineers Name: Tim Jensen and Carolyn Schwafel (audyn Church Date: 8/22/95 Page _

							ENT F		KD	
			SI	TE & W	ELL DA	TA				
Project: Himco	Dump Superfur	nd Site		Well Number: WT118B						
Location: Elkh	art, IN		TOC Elevation: 766.49							
Well Coordina	tes: N. 1531917.	. 406361.10	Ground Elevation: 764.1							
Date Well Inst	alled: 8/18/95 to	8/21/95			Installed	Well Dept	th (TOC):	65.1'		
Date Well Dev	eloped: 8/23/95				Screened	Interval (TOC): 59	.9' to 64.9'		
Fluid Losses D	uring Drilling:	Unknowi	1		Casing D)iameter: 2	2.0" Sched	ule 40 PVC		
			DE	VELOPN	MENT DA	ATA		-		
対 Initial Devel	opment 🗆	Redevel	opment		Weather	Condition	s: Sunny,	warm, 90's	3	
Static Water L Initial: 13.57 f Final: 13.60	Sounded Initial: <u>6</u> Final: <u>6</u>		OC): Time: <u>14</u> Time: <u>15</u>		1	Post Development Water: Jar Photographed AYes □ No				
Development S Date: 8/23/95 Time: 1410				Developm Date:_8 Time:_1		1:	_	1	sured Sediment eness in Jar:	
Misc. Notes:										
Submerged Vo	lume Calculation = 51.6 ft * 0.16		8.3 gal						One Submerged Volume: 8.3 gal	
Submerged Vo	= 51.6 ft * 0.16 Volume Removed		8.3 gal Temp. (°C)	Turb.	Cond.	D.O.	Eh	·. (Co	1	
Submerged Vol 65.2 ft - 13.6 ft Time Pump Rate	= 51.6 ft * 0.16 Volume Removed	gal/ft =	Temp.					·. (Co	Volume: 8.3 gal Remarks	
Submerged Vol 65.2 ft - 13.6 ft Time Pump Rate (gpm	Volume Removed (gal)	gal/ft =	Temp.	(ntu)	(mV)			·. (Co	Volume: 8.3 gal Remarks	
Submerged Vol 65.2 ft - 13.6 ft Time	Volume Removed (gal) 8.2	gal/ft = pH 6.98	Temp. (°C) 15.7	(ntu) 92.1	(mV) -28.1			·. (Co	Volume: 8.3 gal Remarks	
Submerged Vol. 65.2 ft - 13.6 ft Time Pump Rate (gpm. 1413) 1417 2.0	Volume Removed (gal) 8.2 16.4	gal/ft = pH 6.98 6.96	Temp. (°C) 15.7 14.9	(ntu) 92.1 94.2	(mV) -28.1 -27.3			·. (Co	Volume: 8.3 gal Remarks	
Submerged Vol. 65.2 ft - 13.6 ft Time Pump Rate (gpm 1413) 1417 2.0 1421 2.0	Volume Removed (gal) 8.2 16.4 24.6	gal/ft = pH 6.98 6.96 6.96	Temp. (°C) 15.7 14.9 22.0	(ntu) 92.1 94.2 104.1	(mV) -28.1 -27.3 -24.9			·· (Co	Volume: 8.3 gal Remarks	
Submerged Vol 65.2 ft - 13.6 ft Time Pump Rate (gpm 1413 2.0 1417 2.0 1421 2.0 1425 2.0	Volume Removed (gal) 8.2 16.4 24.6 32.8	gal/ft = pH 6.98 6.96 7.13	Temp. (°C) 15.7 14.9 22.0 22.9	(ntu) 92.1 94.2 104.1 144.8	(mV) -28.1 -27.3 -24.9 -36.1			·· (Co	Volume: 8.3 gal Remarks	
Submerged Vol. 65.2 ft - 13.6 ft Time Pump Rate (gpm) 1413 2.0 1417 2.0 1421 2.0 1425 2.0 1433 2.0	Volume Removed (gal) 8.2 16.4 24.6 32.8 41.0	gal/ft = pH 6.98 6.96 7.13 6.90 6.99	Temp. (°C) 15.7 14.9 22.0 22.9 23.2 23.4	(ntu) 92.1 94.2 104.1 144.8 127.0 140.8	(mV) -28.1 -27.3 -24.9 -36.1 -22.7	()	()	·· (Co	Volume: 8.3 gal Remarks	

Project: Himco Dump Superfund Site Well Number: WT118B Location: Elkhart, IN TOC Elevation: 766.49

DEVELOPMENT DATA (CONT.)

Name: Tim Jensen and Carolyn Schwafel

Time Pump Rate (gpm)		Removed		pН	Temp.	Turb.	Cond.	D.O.	Eh	Remarks
	(gpm)			(°C)	(ntu)	(mV)	()	()	(Color, odor, etc.)	
1437	2.0	57.4	6.86	23.9	129.3	-22.2				
1441	2.0	65.6	6.71	24.0	98.6	-13.3				
1445	2.0	73.8	6.70	15.2	73.7	-14.3		,		
1449	2.0	82.0	6.71	13.5	65.2	-13.7				
1453	2.0	90.2	6.63	13.2	104.4	-9.9				
1457	2.0	98.4	6.84	14.2	54.4	-20.5				
1501	2.0	106.6	6.82	13.7	75.4	-20.1				
1505	2.0	114.8	6.85	14.2	54.0	-22.3				
1509	2.0	123.0	6.73	14.0	60.9	-21.7				
									<u> </u>	

Firm: US Army Corps of Engineers

Page _

Date: 8/23/95

of <u>2</u>

APPENDIX F: MONITORING WELL GAUGING FORMS

INSPECTOR(S): Rhiner, Schneider, Benak

SITE: Himco Dump Superfund Site

WELL NUMBER: WTB1

DATE: 9/16/95

TIME: 1155

SWL (TOC): 8.86' 8.85'

BOTTOM: _____TIME: 1158

SWL (TOC): 8.85' 8.86' **BOTTOM:** *BOH too deep **TIME:** 1245

MEASURE POINT MARKED: Yes _____

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A_____

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY **RECOMMENDATIONS:**

- * Looked at records of the well and it was listed at 473' below ground surface. Tape that was used for the wells was only 200' long.
- 5" diameter well

HNu: 1.0 O₂: 20.9% LEL: 0%

INSPECTOR(S): Rhiner, Schneider, Benak

SITE: Himco Dump Superfund Site WELL NUMBER: WTB2

DATE: 9/16/95 **TIME:** 1155

SWL (TOC): 8.31' 8.41' BOTTOM: ____ TIME: 1202

SWL (TOC): 8.43' 8.43' BOTTOM: 13.14' TIME: 1254

MEASURE POINT MARKED: No - measured from the north

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

Debris came up on the probe after measuring the bottom. Looks like roots.

2" diameter well

HNu: 2.0 O₂: 20.9% LEL: 0%

INSPECTOR(S): Rhiner, Schneider, Benak

SITE: Himco Dump Superfund Site WELL NUMBER: WTB3

DATE: 9/16/95 **TIME:** 1156

SWL (TOC): 8.47' 8.46' BOTTOM: _____TIME: 1205

SWL (TOC): 8.48' 8.47' BOTTOM: 123.81' TIME: 1301

MEASURE POINT MARKED: Yes

WELL ID ATTATCHED: No_____

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

5" diameter well

HNu: 0.0 O₂: 21.0% LEL: 0%

INSPECTOR(S): Rhiner, Schneider, Benak

SITE: Himco Dump Superfund Site WELL NUMBER: WTB4

DATE: 9/16/95 **TIME:** 1156

SWL (TOC): 7.58' 7.57' **BOTTOM:** _____**TIME:** 1208

SWL (TOC): 7.49' 7.52' BOTTOM: 173.83' TIME: 1310

MEASURE POINT MARKED: No - measured from the north

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

Debris floating on top of the water. Looks like plants.

5" diameter well

HNu: 0.0 O₂: 20.9% LEL: 0%

INSPECTOR(S): Schneider, Benak

SITE: Himco Dump Superfund Site WELL NUMBER: WTE1

DATE: 9/16/95 **TIME:** 1627

SWL (TOC): 14.16' 14.13' BOTTOM: _____TIME: 1635

SWL (TOC): 14.11' 14.15' BOTTOM: 81.14' TIME: 1726

MEASURE POINT MARKED: Yes

WELL ID ATTATCHED: No.

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

No concrete pad

5" diameter well

HNu: 0.0 O₂: 21.0% LEL: 0%

INSPECTOR(S): Schneider, Benak

SITE: Himco Dump Superfund Site WELL NUMBER: WTE3

DATE: 9/16/95 **TIME:** 1627

SWL (TOC): <u>13.79'</u> <u>13.80'</u> **BOTTOM:** ____**TIME:** <u>1638</u>

SWL (TOC): 13.80' 13.79' BOTTOM: 175.34' TIME: 1726

MEASURE POINT MARKED: Yes

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

No concrete pad

5" diameter well

HNu: 0.0 O₂: 21.0% LEL: 0%

INSPECTOR(S): Schwafel, Pearson

SITE: Himco Dump Superfund Site WELL NUMBER: WT01

DATE: 9/16/95 **TIME:** 1240

SWL (TOC): 11.57' 11.62' BOTTOM: ____TIME: 1249

SWL (TOC): 11.56' 11.63' BOTTOM: 29.24'/29.39' TIME: 1602

MEASURE POINT MARKED: Yes

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

Flushmount well with 12" manhole cover marked "water meter"

2" diameter well

HNu: 0.8 O₂: 21.0% LEL: 0%

INSPECTOR(S): Schwafel, Pearson, Schneider, Benak
SITE: Himco Dump Superfund Site WELL NUMBER: WT101A
DATE: 9/16/95 TIME: 1008
SWL (TOC): 12.77' 12.91' BOTTOM:TIME: 1008
SWL (TOC): 12.76' 12.85' BOTTOM: 18.64'/19.03' TIME: 1648
MEASURE POINT MARKED: Yes
WELL ID ATTATCHED: No
CASING ELEVATION: N/A
WELL SECURED: Yes
INFORMATION MISSING FROM WELL ID: N/A
DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

2" diameter well

INSPECTOR(S): Schwafel, Schneider

SITE: Himco Dump Superfund Site WELL NUMBER: WT101B

DATE: 9/16/95 **TIME:** 1040

SWL (TOC): 12.77' 12.77' BOTTOM: _____TIME: 1040

SWL (TOC): 12.76' 12.82' BOTTOM: 101.14'/101.04' TIME: 1700

MEASURE POINT MARKED: Yes

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

No concrete pad

2" diameter well

INSPECTOR(S): Schwafel, Schneider

SITE: Himco Dump Superfund Site WELL NUMBER: WT101C

DATE: 9/16/95

TIME: 1045

SWL (TOC): 12.42' 12.43' BOTTOM: ____TIME: 1045

SWL (TOC): 12.44' 12.45' BOTTOM: 168.14'/168.89' TIME: 1709

MEASURE POINT MARKED: Yes

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY **RECOMMENDATIONS:**

No concrete pad

2" diameter well

HNu: 1.0 O2: 21.0% LEL: 0%

INSPECTOR(S): Schwafel, Pearson

SITE: Himco Dump Superfund Site WELL NUMBER: WT102A

DATE: 9/16/95 **TIME:** 1110

SWL (TOC): <u>12.55'</u> <u>12.56'</u> **BOTTOM:** ____**TIME:** <u>1136</u>

SWL (TOC): 12.55' 12.60' BOTTOM: 18.16'/18.22' TIME: 1455

MEASURE POINT MARKED: Yes

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

No concrete pad

2" diameter well

HNu: 1.4 O₂: 21.0% LEL: 0%

INSPECTOR(S): Schwafel, Pearson

SITE: Himco Dump Superfund Site WELL NUMBER: WT102B

DATE: 9/16/95 **TIME:** 1110

SWL (TOC): 12.21' 12.24' BOTTOM: ____TIME: 1125

SWL (TOC): 12.21' 12.22' BOTTOM: 67.64'/67.49' TIME: 1440

MEASURE POINT MARKED: Yes

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

No concrete pad

2" diameter well

HNu: 1.8 O₂: 21.0% LEL: 0%

INSPECTOR(S): Schwafel, Pearson

SITE: Himco Dump Superfund Site WELL NUMBER: WT102C

DATE: 9/16/95 **TIME:** 1110

SWL (TOC): 12.7' 12.71' BOTTOM: _____TIME: 1131

SWL (TOC): 12.7' 12.71' BOTTOM: 160.14' TIME: 1500

MEASURE POINT MARKED: Yes

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A:

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

No concrete pad

2" diameter well

HNu: 1.6 O₂: 21.0% LEL: 0%

INSPECTOR(S): Schneider, Benak

SITE: Himco Dump Superfund Site WELL NUMBER: WT103A

DATE: 9/16/95 **TIME:** 1556

SWL (TOC): 7.29' 7.30' BOTTOM: _____TIME: 1604

SWL (TOC): 7.34' 7.34' **BOTTOM:** 18.50' **TIME:** 1702

MEASURE POINT MARKED: Yes

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

2" diameter well

HNu: 0.0 O₂: 20.9% LEL: 0%

4100

INSPECTOR(S): Schneider, Benak	-	
SITE: Himco Dump Superfund Sit	<u>e</u> WELL NUMBER: <u>WT10</u>	<u>4 A</u>
DATE: 9/23/95	TIME: <u>1419</u>	
SWL (TOC): 13.72'	BOTTOM: 18.86'	TIME: <u>1439</u>
SWL (TOC):	BOTTOM:	TIME:
MEASURE POINT MARKED: Yes		
WELL ID ATTATCHED: No		
CASING ELEVATION: N/A		
WELL SECURED: Yes		
INFORMATION MISSING FROM WELL	ID: N/A	
DESCRIBE CONDITION OF WELL RECOMMENDATIONS:	L, PAD, POSTS, ECT.	, AND ANY

2" diameter well

SITE: Himco Dump Superfund Site

WELL NUMBER: WT105A

TIME: 1628

SWL (TOC): 11.62' 11.60' BOTTOM: ____TIME: 1648

INSPECTOR(S): Schneider, Benak

SWL (TOC): 11.62' **BOTTOM:** 18.61' **TIME:** 1722

MEASURE POINT MARKED: Yes

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

2" diameter well

INSPECTOR(S): Schneider, Benak

SITE: Himco Dump Superfund Site WELL NUMBER: WT106A

DATE: 9/16/95 **TIME:** 1614

SWL (TOC): 10.69' 10.68' BOTTOM: ____TIME: 1620

SWL (TOC): 10.69' 10.68' BOTTOM: 18.54' TIME: 1712

MEASURE POINT MARKED: Yes

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

2" diameter well

INSPECTOR(S): Schneider, Benak

SITE: Himco Dump Superfund Site WELL NUMBER: WT111A

DATE: 9/16/95 **TIME:** 1449

SWL (TOC): 14.21' 14.10' BOTTOM: ____TIME: 1501

SWL (TOC): 14.22' 14.19' BOTTOM: 21.80' TIME: 1533

MEASURE POINT MARKED: Yes

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

2" diameter well

SITE:	Himco Dump	Superfund	<u>Site</u> WEI	L NUMBER:	<u>WT112A</u>	
DATE:	9/16/95		TIM	IE: 1155		
SWL (roc): <u>11.72′</u>	11.73′	BOTTOM: _	TIME:	1207	
SWL (roc): <u>11.73'</u>	11.72′	BOTTOM:	17.84'/18.	05' TIME:	<u>1524</u>
MEASUE	RE POINT MAR	KED: No -	measured fro	m the nort	h	

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

INFORMATION MISSING FROM WELL ID: N/A

WELL SECURED: Yes

INSPECTOR(S): Schwafel, Pearson

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

2" diameter well

INSPECTOR(S): Schwafel, Pearson

SITE: Himco Dump Superfund Site WELL NUMBER: WT112B

DATE: 9/16/95 **TIME:** 1155

SWL (TOC): 11.93' 11.94' BOTTOM: ____TIME: 1204

SWL (TOC): 11.94' 11.94' BOTTOM: 62.44'/62.44' TIME: 1530

MEASURE POINT MARKED: No - measured from the north

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

2" diameter well

INSPECTOR(S): Schwafel, Pearson
SITE: Himco Dump Superfund Site WELL NUMBER: WT113A
DATE: 9/16/95 TIME: 1217
SWL (TOC): 18.71' 18.73' BOTTOM:TIME: 1226
SWL (TOC): 18.7' 18.73' BOTTOM: 24.69'/24.69' TIME: 1544
MEASURE POINT MARKED: No - measured from the north
WELL ID ATTATCHED: No
CASING ELEVATION: N/A
WELL SECURED: Yes
INFORMATION MISSING FROM WELL ID: N/A
DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND AN

2" diameter well

RECOMMENDATIONS:

INSPECTOR(S): Schwafel, Pearson
SITE: Himco Dump Superfund Site WELL NUMBER: WT113B
DATE: 9/16/95 TIME: 1217
SWL (TOC): 18.93' 18.95' BOTTOM:TIME: 1229
SWL (TOC): 18.93' 18.94' BOTTOM: 70.14'/70.14' TIME: 1548
MEASURE POINT MARKED: No - measured from the north
WELL ID ATTATCHED: No
CASING ELEVATION: N/A
WELL SECURED: Yes
INFORMATION MISSING FROM WELL ID: N/A
DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND AN

2" diameter well

RECOMMENDATIONS:

INSPECTOR(S): Schwafel, Pearson

SITE: Himco Dump Superfund Site WELL NUMBER: WT114A

DATE: 9/16/95 **TIME:** 1300

SWL (TOC): 17.98' 17.99' BOTTOM: _____TIME: 1310

SWL (TOC): 18.01' 18.02' BOTTOM: 24.74'/24.79' TIME: 1615

MEASURE POINT MARKED: No - measured from the north

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

2" diameter well

INSPECTOR(S): Schwafel, Pearson

SITE: <u>Himco Dump Superfund Site</u> WELL NUMBER: <u>WT114B</u>

DATE: 9/16/95 **TIME:** 1310

SWL (TOC): 18.03' 18.05' BOTTOM: ____TIME: 1314

SWL (TOC): 18.05' 18.05' BOTTOM: 68.04'/67.74' TIME: 1620

MEASURE POINT MARKED: No - measured from the north

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

2" diameter well

INSPECTOR(S): Schwafel, Pearson

SITE: Himco Dump Superfund Site WELL NUMBER: WT115A

DATE: 9/16/95 **TIME:** 1328

SWL (TOC): 14.35' 14.35' BOTTOM: ____TIME: 1336

SWL (TOC): 14.35' 14.35' BOTTOM: 19.89'/19.89' TIME: 1635

MEASURE POINT MARKED: No - measured from the north

WELL ID ATTATCHED: No_____

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

2" diameter well

INSPECTOR(S): Rhiner, Schneider, Benak

SITE: Himco Dump Superfund Site WELL NUMBER: WT116A

DATE: 9/16/95 **TIME:** 1127

SWL (TOC): 10.98' 10.96' BOTTOM: _____TIME: 1131

SWL (TOC): 10.82' 10.79' BOTTOM: 15.06' TIME: 1223

MEASURE POINT MARKED: No - measured from the north

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

2" diameter well

INSPECTOR(S): Rhiner, Schneider, Benak

SITE: Himco Dump Superfund Site WELL NUMBER: WT116B

DATE: 9/16/95 **TIME:** 1127

SWL (TOC): 11.64' 11.64' BOTTOM: _____TIME: 1138

SWL (TOC): 11.60' 11.61' BOTTOM: 60.49' TIME: 1228

MEASURE POINT MARKED: No - measured from the north

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

2" diameter well

INSPECTOR(S): Schneider, Benak

SITE: Himco Dump Superfund Site WELL NUMBER: WT117A

DATE: 9/16/95 **TIME:** 1427

SWL (TOC): 14.42' 14.42' BOTTOM: ____TIME: 1441

SWL (TOC): 14.45' 14.44' BOTTOM: 18.14' TIME: 1518

MEASURE POINT MARKED: No - measured from the north

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

2" diameter well

INSPECTOR(S): Schneider, Benak

SITE: Himco Dump Superfund Site WELL NUMBER: WT117B

DATE: 9/16/95 **TIME:** 1427

SWL (TOC): 13.84' 13.84' BOTTOM: _____TIME: 1436

SWL (TOC): 13.85' 13.86' BOTTOM: 63.33' TIME: 1510

MEASURE POINT MARKED: No - measured from the north

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION' MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY RECOMMENDATIONS:

2" diameter well

INSPECTOR(S): Schneider, Benak

SITE: Himco Dump Superfund Site WELL NUMBER: WT118B

DATE: 9/16/95 TIME: 1449

SWL (TOC): 14.20' 14.20' BOTTOM: ____TIME: 1457

SWL (TOC): 14.21' 14.20' BOTTOM: 65.02' TIME: 1527

MEASURE POINT MARKED: No - measured from the north

WELL ID ATTATCHED: No

CASING ELEVATION: N/A

WELL SECURED: Yes

INFORMATION MISSING FROM WELL ID: N/A

DESCRIBE CONDITION OF WELL, PAD, POSTS, ECT., AND ANY

2" diameter well

RECOMMENDATIONS:

APPENDIX G: MONITORING WELL SAMPLING RECORDS

PROJE	CT: <u>Himco Dump Superf</u>	und Site	
WELL	#: <u>WTE1</u>	DATE: 9/26/95	TIME: 0730
WEATH	HER: Cloudy 55-68°	sunny in afternoon	
WELL	CONDITION: Existing ((USGS completion) No concrete pa	ad
WELL	DEPTH (TOC): 81.24	_ft. WATER LEVEL (TOC): 14.36	ft.
WELL	DIAMETER; 5 in.	PUMP DEPTH: 77 ft.	
PURGE	E METHOD: Grundfos Pu	ump	
MINIM	NUM PURGE VOLUME*:	342 gallons	

PURGE RATE: ~2 gpm SAMPLERS INITIALS: SGP, CAS

TIME	GAL.S REM.	TEMP.	рН	COND.	TURB. (NTU)	DIS. OXYGEN	REMKS
1000	10	-	-	-	-	-	Purgd
1028	50	11.5	7.46	975	1.35	_	10
1057	100	11.5	7.52	980	1	_	gal.
1121	150	11.6	7.61	986	1.7	-	then
1144	200	11.6	7.53	986	< 1	_	used
1208	250	11.6	7.53	986	< 1		flow
1233	300	11.6	7.61	986	< 1		cell.
1257	350	11.6	7.62	990	< 1	<u>-</u>	

DID WELL PUMP DRY? DESCRIBE: No. Measured water levels 14.37' at start, 14.41' after 200 gal. purged; meas.@1350 at 14.36'

SAMPLE TYPES: 2-40ml VOA, 4-1 liter amber/SVOA and pest/PCB, 2-1 liter poly metals/cyanide and PRP splits

SAMPLE NUMBERS: See Traffic Report

REMARKS: Background HNu 3.0/Well HNu 3.0/O2 20.9%/LEL 0%/20 gal.

@1.45 qpm, increased flow rate up to 2.16 qpm

* Purge volume = Depth of well (ft.) x Multiplier x 5

DIAMETR	2"	4"	5"	6"	8"
MULTIPLR	0.16	0.65	1.02	1.47	2.61

PROJECT:	Himco D	ump Supe	rfund Si	te	 				
WELL #:W	T01			DATE: 9/2	22/95	TI	ME: <u>1016</u>		
WEATHER:	Cloudy,	cool 5	0°s						
WELL CONDITION: Existing (see W.L. sheets)									
WELL DEPTH (TOC): 29.34 ft. WATER LEVEL (TOC): 11.67 ft.									
WELL DIA	METER:	2 in.	PUMP	DEPTH:	26.7	ft.			
PURGE ME	•			•					
MINIMUM									
PURGE RA	TE: <u>.25</u>	gpm		SI	MPLERS 1	INITIALS:	<u>CAS, SMS</u>		
TIME	GAL.S REM.	TEMP.	рН	COND.	TURB. (NTU)	DIS. OXYGEN	REMKS		
1055	0	13.3	7.56	684	6.3	.2			
1102	1	13.8	7.52	675	5.9	0			
1107	2	13.9	7.50	675	5.7	0			
1111	3	13.9	7.49	676	5.8	0			
1115	44	13.9	7.48	675	6.0	0			
1119	5	13.9	7.47	675	5.8	0			
1122	6	14.0	7.46	679	5.5	0			
1127	7	13.9	7.45	676	5.4	0			
1132	8	13.9	7.45	679	5.4	00			
1147	9	13.9	7.44	675	5.5	0			
DID WELL	PUMP DR	Y? DESCR	RIBE: No.			•			
SAMPLE T	YPES: 2-4	40ml VOA	+ 4-11it	ter Amber	+ 2-1li	ter poly	+ PRP		
splits									
SAMPLE N	UMBERS:_	See Traff	ic Repor	rt					
REMARKS: Background HNu 0.2/Well HNu 0.2/O2 20.9%/LEL 0%									

* Purge volume = Depth of well (ft.) x Multiplier x 5

DIAMETR	2"	4"	5"	6"	8"
MULTIPLR	0.16	0.65	1.02	1.47	2.61

WATER SAMPLING CONTINUATION SHEET

PROJECT: Himco Dump Superfund Site

WELL #: WT01 DATE: 9/22/95

TIME	GAL.S	TEMP.	рН	COND.	TURB.	DIS.	REMKS
TIME	REM.	(C)	pii	COND.	(NTU)	OXYGEN	KEMKS
1142	10	13.9	7.44	675	5.4	0	
1145	11	13.9	7.44	679	5.3	0	
1149	12	13.9	7.43	676	5.1	0	
1153	13	13.9	7.43	680	4.9	0	·
1159	14	14.0	7.42	683	4.8	0	
		,					
	``						
			_				
				•			
·							
					-		
						· - · · · ·	

REMARKS: Sampling started at @ 1203, completed at @ 1218

PROJECT: Himco Dump Superfund Site	_
WELL #: WT101A DATE: 9/25/95 TIME	: <u>090</u>
WEATHER: Overcast 55°	
WELL CONDITION: Existing (see W.L. sheets)	
WELL DEPTH (TOC): 18.84 ft. WATER LEVEL (TOC): 13.07	ft
WELL DIAMETER: 2 in. PUMP DEPTH: 16 ft.	
PURGE METHOD: Grundfos Pump	
MINIMUM PURGE VOLUME*: 4.5 gallons	
PURGE RATE: 0.46 gpm SAMPLERS INITIALS: SO	P,CAS
REM. (C) (NTU) OXYGEN	EMKS
1035 1 44 - Pu	.rgd
1038 2 14.4 7.11 1.47 8.5 6.3 1	
1040 3 14.4 7.07 1.47 - 12.7 ga	1.
1042 4 14.7 7.07 1.49 2.75 6.2 th	en_
1045 5 14.8 7.07 1.46 2.1 6.2 us	ed
1048 6 14.8 7.07 1.46 2.0 6.2 fl	ow
ce	11.
DID WELL PUMP DRY? DESCRIBE: No.	
	DDD
SAMPLE TYPES: 8-40ml VOA + 12-1liter Amber + 2-1liter poly +	PRP
splits	
SAMPLE NUMBERS: See Traffic Report	
REMARKS: Background HNu .8-1.0/Well HNu 1.0/O2 21.1%/LEL 0%/	1055
start sampling, 1125 complete sampling, sampling rate 300ml/10)sec.
* Purge volume = Depth of well (ft.) x Multiplier x 5	
DIAMETR 2" 4" 5" 6" 8	·

0.65

MULTIPLR

0.16

1.02

1.47

2.61

PROJI	ECT:	Himco D	ump Supe:	rfund Sit	te			
WELL	L #:WT101B DATE: 9/25/95							
WEAT	HER:	Pt. clo	udy 6	50				
WELL	CON	DITION:_	Existing	(see W.I	. sheets	3)		
WELL	DEP'	TH (TOC)	: 101.14	ft.	WATER	LEVEL (T	OC): 12.9	95ft.
WELL	DIA	METER;	2in.	PUMP	DEPTH:_	991	Et.	
PURGI	E ME'	THOD: G	rundfos]	Pump				
MINIM	MUM	PURGE VO	LUME*:	72.5 c	allons			
							INITIALS:	
TI	ME	GAL.S	TEMP.	На	COND.	TURB.	DIS.	REMKS

TIME	GAL.S REM.	TEMP.	рН	COND.	TURB. (NTU)	DIS. OXYGEN	REMKS
1325	°o	-	1	<u>-</u>	10.5	_	Sligt
1336	10	12.0	7.37	1038	1.2	7.0	odor
1347	20	12.0	7.26	1047	< 1	7.0	from
1358	30	11.9	7.52	1047	< 1	7.0	purge
1409	40	11.9	7.52	1042	< 1	7.0	water
1420	50	12.0	7.52	1042	< 1	7.0	No
1431	60	11.9	7.52	1042	< 1	7.0	reads
1441	70	11.9	7.51	1042	< 1	7.0	on
1445	72.5	_	-	_	<u>-</u>	-	meter

DID WELL PUMP DRY? DESCRIBE: No.

SAMPLE TYPES: 4-40ml VOA + 8-1liter Amber + 4-1liter poly + PRP
splits

SAMPLE NUMBERS: See Traffic Report

REMARKS: Background HNu .1/Well HNu 0.5/O2 21.1%/LEL 0%/1325

hook up flow cell, sampling rate 300ml/15sec.

* Purge volume = Depth of well (ft.) x Multiplier x 5

DIAMETR	2"	4"	5"	6"	8"
MULTIPLR	0.16	0.65	1.02	1.47	2.61

PROJECT:	<u> Himco D</u>	ump Supe	erfund Si	<u>te</u>			
WELL #: W'	T102A			_ DATE: _9_	/20/95		TIME: 1400
WEATHER:	Overcas	t65 ⁰)	_			
WELL CON	DITION:_	Existing	g (see W.]	<u>ú. sheets</u>	3)		
WELL DEP	TH (TOC)	: 18.16	ft.	WATER 1	LEVEL (T	OC): <u>12</u>	2,65 ft.
WELL DIA	METER:	2in	. PUMP	DEPTH:_	16	ft.	
PURGE ME	THOD: G	rundfos	Pump				
MINIMUM 1	PURGE VO	LUME*:	4.3 ga	llons			
PURGE RA					AMPLERS :	INITIAL	LS: SGP, CAS
TIME	GAL.S REM.	TEMP.	рН	COND.	TURB. (NTU)	DIS. OXYGE	
1430	, 0	16.1	7.38	825	23.8	2.9	
1435	1	15.8	7.38	717	6.5	2.6	
1439	2	15.6	7.36	727	1.75	2.5	
1442	3	15.6	7.35	724	1.25	2.5	
1445	4	15.6	7.33	721	1.1	2.5	
1448	5	15.6	7.32	724	1.0	2.5	
			_				
			-			1	
		·					
			CRIBE: No.		c + 2-11:	iter po	oly + PRP
splits				*****			
REMARKS:_	Backgrou	und HNu	fic Repor	HNu 0.8/			
			h turbidi	_		_	cell
* Purge v	rolume =	Depth c	of well (f	ft.) x Mu	ltiplier	r x 5	
DIAMETI	R 2	11	4"	5"	6	5"	8 "
MULTIPL	$R \mid 0$.	16	0.65	1.02	1.	47	2.61

PROJECT:	Himco	Dump	Superfund	Site

WELL #:WT102B DATE: 9/20/95 TIME:1123

WEATHER: Partly cloudy, upper 50°

WELL CONDITION: Existing (see W.L. sheets)

WELL DEPTH (TOC): 67.64 ft. WATER LEVEL (TOC): 12.31 ft.

WELL DIAMETER: 2 in. PUMP DEPTH: 65 ft.

PURGE METHOD: Grundfos Pump

MINIMUM PURGE VOLUME*: 55.13 gallons

PURGE RATE: 1.0 gpm SAMPLERS INITIALS: MTB, SMS

					<u> </u>	T .	
TIME	GAL.S REM.	TEMP.	Ης	COND.	TURB. (NTU)	DIS. OXYGEN	REMKS
1209	0	12.4	7.94	410	_	> 250	
1216	5	11.9	7.73	403	2.1	0	
1221	10	11.8	7.65	399	1.0	0	
1226	15	11.8	7.61	398	1.1	0	
1231	20	11.7	7.53	407	.5	0	
1236	25	11.7	7.55	407	.5	0	
1241	30	11.7	7.57	407	.8	0	
1246	35	11.7	7.57	407	.5	0	
1251	40	11.7	7.57	407	1.0	0	
1256	45	11.7	7.58	407	. 4	0	

DID WELL PUMP DRY? DESCRIBE: No.

SAMPLE TYPES: 2-40ml VOA + 4-1liter Amber + 2-1liter poly + PRP

splits

SAMPLE NUMBERS: See Traffic Report

REMARKS: Background HNu 0.0/Well HNu 0.0/O₂ 21.0%/LEL 0%

* Purge volume = Depth of well (ft.) x Multiplier x 5

DIAMETR	2"	4"	5"	6"	8"
MULTIPLR	0.16	0.65	1.02	1.47	2.61

WATER SAMPLING CONTINUATION SHEET

PROJECT: Himco Dump Superfund Site

WELL #: WT102B

DATE: 9/20/95

TIME	GAL.S REM.	TEMP.	рН	COND.	TURB.	DIS. OXYGEN	REMKS
1301	50	11.7	7.58	407	0.9	0	
1306	55	11.7	7.65	407	0.5	0	
	3						,
		<u>,, </u>					
	•						
		-					<u> </u>
			<u></u>				
		·					
							

REMARKS: Start sampling @ 1319, completed @1336

PROJECT: Himco Dump Superfund Site
WELL #:WT111A DATE: 9/22/95 TIME:0945
WEATHER: Ptly sunny, 5-10mph sw wind 60°
WELL CONDITION: Existing (see W.L. sheets)
WELL DEPTH (TOC): 21.84 ft. WATER LEVEL (TOC): 14.35 ft.
WELL DIAMETER: 2 in. PUMP DEPTH: 18.7 ft.
PURGE METHOD: Grundfos Pump
MINIMUM PURGE VOLUME*: 6.2 gallons
PURGE RATE: 0.39 gpm SAMPLERS INITIALS: SGP, MTE

TIME '	GAL.S REM.	TEMP.	рН	COND.	TURB. (NTU)	DIS. OXYGEN	REMKS
1112	·,		-	-	> 200	_	Purgd
1117	5		_	<u>-</u>	66.4	_	5 gal
1125	6	14.8	5.49	46	28	> 250	and
1128	7	14.8	5.6	46.5	18	> 250	hookd
1131	8	14.7	5.63	47.4	14	> 250	up
1134	9	14.7	5.61	47.7	10	> 250	flow
1137	10	14.5	5.67	47.7	7.1	> 250	cell
1140	11	14.4	5.61	47.7	6.0	> 250	
1143	12	14.4	5.51	47.8	4.3	> 250	

DID WELL PUMP DRY? DESCRIBE: No.

SAMPLE TYPES: 2-40ml VOA + 4-1liter Amber + 2-1liter poly + PRP
splits

SAMPLE NUMBERS: See Traffic Report

REMARKS: Background HNu 1.2/Well HNu 0.9/O₂ 21.1%/LEL 0%/1150

begin sampling/1210 complete sampling

* Purge volume = Depth of well (ft.) x Multiplier x 5

DIAMETR	2"	4"	5"	6"	8"
MULTIPLR	0.16	0.65	1.02	1.47	2.61

PROJECT:_H	Himco D	ump Sı	uperfund Si	te			
WELL #:WT	112A		·····	_ DATE: 9_	/19/95	······	_TIME: 0800
WEATHER:	etly su	nny,	70°				
WELL COND	TION:_	New (s	see W.L. sh	eets)		• • • • • • • • • • • • • • • • • • • •	
WELL DEPTH	H (TOC)	: 17.9	9 <u>4</u> _ft.	WATER 1	LEVEL (TO	OC): 11	.80ft.
WELL DIAM	ETER ;	_2 <u>i</u>	in. PUMP	DEPTH:_	15 f	Et.	
PURGE METE	HOD: G	rundfo	os Pump				
MINIMUM PU	JRGE VO	LUME*:	4.8 qa	llons	-		
					AMPLERS I	INITIAL	S: SGP, CAS
TIME	GAL.S REM.	TEMP	. I T	COND.	TURB. (NTU)	DIS. OXYGE	l II
0927	0	15.	7 7.54	648	36.8	4.5	Turb.
0931	1	15.	9 7.53	642	16.6	4.1	high
0935	2	16.	0 7.51	633	8.5	4.1	at
0939	3	16.	0 7.50	625	3.6	3.9	first
0943	4	16.0	7.49	627	1.6	3.8	Purgd
0947	5	16.	7.49	625	0.95	3.8	2 gal
							then
							flow
		<u></u>					cell
DID WELL F	PUMP DRY	? DE	SCRIBE: NO				•
SAMPLE TYP	PES: 8-4	Oml V	OA + 12-1li	ter Ambe	r + 4-11	<u>iter po</u>	ly + PRP
splits					 .		
SAMPLE NUM	BERS:_S	See Tr	affic Repor	ct			
REMARKS: E	Backgrou	and HN	u 0.1/Well	HNu 0.1/	O ₂ 21.0%	/LEL 0%	/0954
began samp	ole coll	Lectio	n/1040-comp	oleted co	llection	1	
* Purge vo	olume =	Depth	of well (:	Et.) x Mu	ıltiplier	x 5	
DIAMETR	2		4"	5"		11	8"
MULTIPLR	0.	16	0.65	1.02	1.	47	2.61

PROJECT:	Himco	Dump	Superfund	Site
_				

WELL #: WT112B DATE: 9/19/95 TIME: 1419

WEATHER: Cloudy, cool 70°s

WELL CONDITION: New (see W.L. sheets)

WELL DEPTH (TOC): 62.44 ft. WATER LEVEL (TOC): 11.97 ft.

WELL DIAMETER: 2 in. PUMP DEPTH: 59.8 ft.

PURGE METHOD: Grundfos Pump

MINIMUM PURGE VOLUME*: 50.36 gallons

PURGE RATE: 1.0 gpm SAMPLERS INITIALS: MTB, SMS

-							
TIME	GAL.S REM.	TEMP.	рН	COND.	TURB. (NTU)	DIS. OXYGEN	REMKS
1514	` 0	12.0	7.51	387	_	> 250	
1519	5	11.7	7.51	391	4.5	0	
1524	10	11.6	7.50	384	3.4	0	
1529	15	11.6	7.47	379	2.5	0	
1534	20	11.5	7.45	375	2.2	0	
1539	25	11.5	7.43	373	1.6	0	
1544	30	11.5	7.41	371	1.3	0	
1549	35	_ 11.5	7.39	373	1.3	0	
1554	40	11.5	7.36	372	1.0	0	
1559	45	11.5	7.35	373	1.0	0	

DID WELL PUMP DRY? DESCRIBE: No.

SAMPLE TYPES: 2-40ml VOA + 4-1liter Amber + 2-1liter poly + PRP

splits

SAMPLE NUMBERS: See Traffic Report

REMARKS: Background HNu 0.6/Well HNu 0.6/O₂ 20.9%/LEL 0%

* Purge volume = Depth of well (ft.) x Multiplier x 5

DIAMETR	2"	4"	5"	6"	8".
MULTIPLR	0.16	0.65	1.02	1.47	2.61

WATER SAMPLING CONTINUATION SHEET

PROJECT: Himco Dump Superfund Site

WELL #: WT112B DATE: 9/19/95

TIME	GAL.S REM.	TEMP.	рН	COND.	TURB. (NTU)	DIS. OXYGEN	REMKS
1604	50	11.5	7.32	373	0.8	0	
_							
-	,						
				•			
	٠						
							·
		i					

REMARKS:		 	
·		 	

		FIELD F	RECORD OF	WATER S	AMPLING		
PROJECT:	Himco D	ump Supe	rfund Si	te			
WELL #:W	T113A			_ DATE: _9,	/18/95		TIME: 083
WEATHER:	Sunny	50°					
WELL CON	DITION:_	New (see	W.L. sh	eets)			
WELL DEP	TH (TOC)	: 24.69	ft.	WATER I	LEVEL (TO	OC):_18.7	76 ft
WELL DIA							
PURGE ME	a						
MUMINIM			_				
PURGE RA	TE: 0.13	2 gpm		Si	AMPLERS 1	INITIALS:	SGP, CA
TIME	GAL.S REM.	TEMP.	рН	COND.	TURB.	DIS. OXYGEN	REMKS
1150	÷ 1	16.9	7.34	202	33.1	8.5	*
1155	2	16.3	7.57	218	20.5	9.0	Pump
1201	3	16.0	7.59	218	5.8	9.0	rate
1206	4	15.9	7.61	188	4.6	9.0	surgd
1212	5	16.3	7.62	223	3.8	8.8	up
1222	6	18.1	7.60	223	3.4	8.9	
1225	7	15.2	7.60	216	5.5*	8.8	
1228	8	15.5	7.63	216	2.1	8.8	
1231	9	15.3	7.62	216	1.3	8.8	
1234	10	15.3	7.61	216	.8	8.9	
DID WELL	PUMP DR	Y? DESCI	RIBE: No.			-	
SAMPLE T	YPES: 2-	40ml VOA	+ 4-1lit	er Amber	c + 2-1li	iter poly	+ PRP
splits					· · · · · · · · · · · · · · · · · · ·		
SAMPLE N	UMBERS:	See Traff	ic Repor	rt			

* Purge volume = Depth of well (ft.) x Multiplier x 5

completed sample collection

DIAMETR	2"	4"	5"	6"	8"
MULTIPLR	0.16	0.65	1.02	1.47	2.61

REMARKS: Background HNu 0.4/Well HNu 0.5/O₂ 21.1%/LEL 0%/1300

PROJECT:	Himco	Dump	Superfund	Site

WELL #:WT113B DATE: 9/18/95 TIME: 1515

WEATHER: Partly cloudy, upper 60 to 70°

WELL CONDITION: New (see W.L. sheets)

WELL DEPTH (TOC): 70.14 ft. WATER LEVEL (TOC): 18.96 ft.

WELL DIAMETER: 2 in. PUMP DEPTH: 67.5 ft.

PURGE METHOD: Grundfos Pump

MINIMUM PURGE VOLUME*: 56 gallons

PURGE RATE: 0.93 qpm SAMPLERS INITIALS: SGP, SMS

TIME	GAL.S REM.	TEMP.	рH	COND.	TURB. (NTU)	DIS. OXYGEN	REMKS
1520	.0	12.8	7.22	440	-	0.5	
1528	5	12.1	7.33	444	4.2	0	
1534	10	12.0	7.34	444	2.4	0	
1539	15	11.8	7.32	439	2.3	0	
1543	20	11.7	7.29	428	1.6	0	
1548	25	11.7	7.26	422	1.8	0	
1553	30	11.8	7.24	408	1.2	0	
1558	35	11.8	7.22	408	1.1	0	
1603	40	11.8	7.20	411	.8	0	
1608	45	11.8	7.20	408	. 8	0	

DID WELL PUMP DRY? DESCRIBE: No. Pumped small amount of sand

SAMPLE TYPES: 2-40ml VOA + 4-1liter Amber + 2-1liter poly + PRP

splits

SAMPLE NUMBERS: See Traffic Report

REMARKS: Background HNu 1.0/Well HNu 1.0/O₂ 20.9%/LEL 0%

DIAMETR	2"	4"	5"	6"	8"
MULTIPLR	0.16	0.65	1.02	1.47	2.61

PROJECT: Himco Dump Superfund Site

WELL #: WT113B

DATE: 9/18/95

TIME	GAL.S REM.	TEMP.	рН	COND.	TURB.	DIS. OXYGEN	REMKS
1614	50	11.7	7.17	418	0.8	0	
1619	55	11.8	7.17	408	0.6	0	
1620	56,	11.8	7.17	408	0.6	0	
	•						
		-	_				
							•

REMARKS: Temp/pH/cond/diss O₂ measured with QED Purge Saver flow cell S/N 5224-0260-2012

PROJECT:	Himco D	ump Supe	rfund Si	te			
WELL #:W	T114A			_ DATE: 9	/21/95	т	'IME: <u>1258</u>
WEATHER:	Light r	ain, coo	l 50°				
WELL CON	DITION:_	New (see	W.L. sh	eets)			
WELL DEP	TH (TOC)	: 24.74	ft.	WATER	LEVEL (TO	OC): 18.1	0 ft .
	METER:						
	*						
	THOD: G						
MINIMUM	PURGE VO	LUME*:	6.58 g	allons	· · · · · · · · · · · · · · · · · · ·		
PURGE RA	TE: 0.25	<u>abm</u>		S	AMPLERS 1	INITIALS:	SMS,MTB
TIME	GAL.S REM.	TEMP.	Нq	COND.	TURB.	DIS. OXYGEN	REMKS
1328	`0	15.3	7.08	1.96	_	> 250	
1333	1	15.6	7.08	1.96	19.1	> 250	
1340	2	15.5	7.05	1.96	16.8	> 250	
1345	_ 3	15.4	7.04	1.96	17.6	42.2	
1351	4	15.4	7.03	1.95	10.9	30.3	
1356	5	15.4	7.02	1.95	3.5	48.5	
1400	6	15.4	7.01	1.95	2.1	18.2	
1404	6.6	15.5	7.01	1.96	-	> 250	
DID WELL	PUMP DR	Y? DESCI	RIBE: No.	•		•	
SAMPLE T	YPES: 2-4	40ml VOA	+ 4-1lit	er Ambe	r + 2-1li	iter poly	+ PRP
splits							
SAMPLE N	UMBERS: S	See Traff	ic Repo	rt			
					/0 20 00	/T ET 00-/	
KEMARKS:	Backgro	una H <u>NU</u> (J.4/WEIL	<u> HNU 0.2/</u>	'∪ ₂ ∠U.8%	/LEL 0%/	

DIAMETR	2"	4"	5"	6"	8"
MULTIPLR	0.16	0.65	1.02	1.47	2.61

PROJE	ECT: Himco Dump Superfund S	ite		<u>.</u>	
WELL	#: <u>WT114B</u>	DATE:	9/21/95	5	TIME: 090
WEATH	HER: Overcast, occasional di	<u>cizzle :</u>	50°s		·
WELL	CONDITION: New (see W.L. s)	neets)			
WELL	DEPTH (TOC): 67.84 ft.	WATER	LEVEL	(TOC): 18.	<u>15</u> ft
WELL	DIAMETER: 2 in. PUM	P DEPTH:	65.	2_ft.	
PURGE	E METHOD: Grundfos Pump				

MINIMUM PURGE VOLUME*: 49.75 gallons

PURGE RATE: 1.0 gpm SAMPLERS INITIALS: MTB, SMS

TIME	GAL.S REM.	TEMP.	рН	COND.	TURB. (NTU)	DIS. OXYGEN	REMKS
0938	`0	12.8	7.17	844	_	> 250	
0943	5	12.8	7.17	849	8.6	0	
0948	10	12.7	7.12	870	3.7	0	
0953	15	12.7	7.09	874	2.9	0	
0958	20	12.7	7.04	874	1.8	0	
1003	25	12.8	7.14	853	1.2	0	
1008	30	12.7	7.06	874	.8	0	
1013	35	12.8	7.06	853	1.0	0	
1018	40	12.8	7.17	853	.7	0	
1023	45	12.8	7.10	857	.8	0	

DID WELL PUMP DRY? DESCRIBE: No.

SAMPLE TYPES: 2-40ml VOA + 4-1liter Amber + 2-1liter poly + PRP splits

SAMPLE NUMBERS: See Traffic Report

REMARKS: Background HNu 0.2/Well HNu 0.2/O2 20.8%/LEL 0%

DIAMETR	2"	4 ¹¹	5"	6"	8"
MULTIPLR	0.16	0.65	1.02	1.47	2.61

PROJECT: Himco Dump Superfund Site

WELL #: WT114B **DATE:** 9/21/95

TIME	GAL.S REM.	TEMP.	На	COND.	TURB. (NTU)	DIS. OXYGEN	REMKS
1028	50	12.8	7.07	857	0.3	0	
		l					
	ą.						
	*						
					-		
							:

REMARKS: Sampling started at @ 1035, completed at @ 1051

PROJECT:	Himco D	ump Sur	perfund Si	te			
WELL #:W	T115A			_ DATE: _9	/25/95		TIME: 1410
WEATHER:	Clear,	breezy,	lower 6	0°s			
WELL CON	DITION:_	New (se	ee W.L. sh	eets)			
WELL DEP	TH (TOC)	: 19.89	ft.	WATER I	LEVEL (TO	oc): <u>14.</u> 4	49ft.
WELL DIA	METER:	_2in	ı. PUMP	DEPTH:_	17.75	ft.	
PURGE ME	THOD: G	rundfos	Pump				
MINIMUM	PURGE VO	LUME*:_	5.4 ga	allons			
PURGE RA'	TE: <u>0.25</u>	gpm		s;	AMPLERS 1	INITIALS	: SMS,MTB
TIME	GAL.S REM.	TEMP.	рН	COND.	TURB.	DIS. OXYGEN	REMKS
1431	· 0	-	-		20.1	-	
1436	1	17.0	7.06	1166	8.3	3.7	
1441	2	16.6	7.00	1168	6.3	2.4	
1445	3	16.5	7.00	1162	4.6	1.6	
1449	4	16.4	6.99	1162	2.8	1.2	
1453	5	16.4	6.99	1162	2.3	0.8	
1455	5.5	16.4	6.98	1162	1.4	0.6	
DID WELL	PUMP DR	Y? DES	CRIBE: No.	•			
SAMPLE T	YPES: 2-4	40ml VO)A + 4-1lit	ter Amber	r + 2-1li	iter poly	y + PRP
	ITMRERS:	See Tra	ffic Repor	rt.			
			0.4/Well		 ′O。21.0%	/I.EI. 0%/	Start
_					<u> </u>		<u> </u>
			completed a			_	
			of well (i	T	T T		1
DIAMET	R 2	11	4 "	5"	6	5 "	8"

0.65

1.02

1.47

2.61

0.16

MULTIPLR

PROJECT:	Himco D	ump Supe	rfund Si	te			
WELL #:W	T116A			DAT	E: 9/21/	95	TIME: 0900
WEATHER:	Overcas	t, 60° sl	ight dri	zzle_			
WELL CON							
					ER LEVEL	(TOC) •	11.25 ft.
							<u> </u>
WELL DIA	*			DEPTH:	13	rt.	
PURGE ME	THOD: Gru	nfos Pump)				
MINIMUM	PURGE VO	LUME*:		3.2	gallons		
PURGE RA	TE: 0.31			S	SAMPLERS	INITIAL	S: <u>SGP,CAS</u>
TIME	GAL.S REM.	TEMP.	рН	COND.	TURB.	DIS. OXYGEN	REMKS
0942	`0	-	_	_	28	-	Black
0953	5	<u>-</u>	-	-	70	-	to
1000	8	_	-	_	38	-	dark
1002	8	17.5	6.91	3.15	-	0	gray
1006	9	18.0	6.89	3.46	29	0	color
1009	10	18.1	6.87	3.46	13	0	Purgd
1012	11	18.1	6.87	3.47	9.5	0	8 gal
1015	12	18.1	6.84	3.47	7	0	hookd
1018	13	18.1	6.83	3.46	6.3	0	up
							cell
DID WELL	PUMP DR	Y? DESCI	RIBE: No			•	
SAMPLE T	YPES: 4-4	40ml VOA	+ 8-1lit	er poly	+ PRP		
splits							
SAMPLE N	UMBERS:_S	See Traff	ic Repor	rt			
REMARKS:					/0 ₂ 21.0%	/LEL 0%/	'Slight
H ₂ S odor	/Complete	ed sampli	ng at 11	.00			

DIAMETR	2"	4"	5"	6"	8"
MULTIPLR	0.16	0.65	1.02	1.47	2.61

PROJEC	CT: Himco Dump	<u>Superfund Si</u>	te				
WELL #	#: <u>WT116B</u>		_DATE:	9/21/95	j	TIME	:120
WEATHI	ER: Overcast,	55° slight dr	rizzle				
WELL (CONDITION: New	(see W.L. sh	eets)				
WELL I	EPTH (TOC): 60	.63 ft.	WATER	LEVEL	(TOC):_	11.75	ft
WELL I	DIAMETER: 2	_in. PUMP	DEPTH:_	58	ft.		
PURGE	METHOD: Grund	fos Pump					

MINIMUM PURGE VOLUME*: 40 gallons

PURGE RATE: 0.61 gpm SAMPLERS INITIALS: SGP, CAS

TIME	GAL.S REM.	TEMP.	Нq	COND.	TURB. (NTU)	DIS. OXYGEN	REMKS
1345	, 0	12.0	6.97	821	18	0.3	
1354	5	12.2	6.94	821	4.5	0	
1402	10	12.2	6.91	821	0.8	0	
1412	15	12.2	6.92	821	0.8	0	
1418	20	12.2	6.93	826	< 1	0	
1426	25	12.2	6.93	821	< 1	0	
1434	30	12.2	6.93	821	< 1	0	
1442	35	12.2	6.93	821	< 1	0	
1450	40	12.2	6.93	821	< 1	0	
			:				

DID WELL PUMP DRY? DESCRIBE: No.

SAMPLE TYPES: 2-40ml VOA + 4-1liter Amber + 2-1liter poly + PRP splits

SAMPLE NUMBERS: See Traffic Report

REMARKS: Background HNu 6.0/Well HNu 6.0/O₂ 21.0%/LEL 0%/Purged

1 qallon and hooked up flow cell

DIAMETR	2"	4"	5"	6"	8"
MULTIPLR	0.16	0.65	1.02	1.47	2.61

PROJECT:	<u> Himco D</u>	ump Supe	rfund Si	te			
WELL #:M	T117A			_ DATE: 9_	/26/ <u>95</u>		TIME: 0923
WEATHER:	Partly	cloudy	50°				
WELL CON	DITION:	New (see	W.L. she	eets)			
WELL DEP	TH (TOC)	: 18.28	ft.	WATER 1	LEVEL (TO	DC): 14.6	5 <u>4</u> `ft .
WELL DIA	METER:	2 in.	PUMP	DEPTH:	16.64	ft.	
	THOD:G						
							··- <u>-</u>
	PURGE VO		-				
PURGE RA	TE: 0.25	gpm	<u> </u>	S	AMPLERS 1	INITIALS	: SMS,MTE
TIME	GAL.S REM.	TEMP.	рН	COND.	TURB.	DIS. OXYGEN	REMKS
0934	•-		-	_	_	-	
0953	0	16.1	7.58	280	15.5	1.8	
0957	1	16.9	7.58	277	8.23	1.5	
1001	2	17.6	7.56	284	6.8	1.3	
1005	3	17.7	7.55	291	5.3	1.2	
1009	4	17.7	7.55	293	4.6	1.0	
1013	5	17.8	7.52	289	3.6	0.9	
		· · · · · · · · · · · · · · · · · · ·					
DID WELL	PUMP DRY	Y? DESCE	RIBE: No.			•	
SAMPLE T	YPES: 2-	40ml VOA	+ 4-1lit	er Amber	: + 2-1li	ter poly	r + PRP
splits							
SAMPLE N	UMBERS:_S						
	Backgrou				O ₂ 20.8%	/LEL 0%/9	Start
	at @1020					_ **/*	

DIAMETR	2"	4"	5"	6"	8"
MULTIPLR	0.16	0.65	1.02	1.47	2.61

PROJECT: Himco	Dump	Superfund	Site	
				

WELL #:WT117B DATE: 9/26/95 TIME:1239 WEATHER: Clear, sunny, upper 60°s

WELL CONDITION: New (see W.L. sheets)

WELL DEPTH (TOC): 63.47 ft. WATER LEVEL (TOC): 14.05 ft.

WELL DIAMETER: 2 in. PUMP DEPTH: 60.83 ft.

PURGE METHOD: Grundfos Pump

MINIMUM PURGE VOLUME*: 49.58 gallons

PURGE RATE: 1.0 qpm SAMPLERS INITIALS: MTB, SMS

			T				
TIME	GAL.S REM.	TEMP. (C)	Нq	COND.	TURB.	DIS. OXYGEN	REMKS
1306	• 0	14.1	7.59	623	12.6	0	
1311	5	13.7	7.62	651	2.0	0	
1316	10	13.5	7.61	658	1.0	0	
1321	15	13.4	7.59	654	.6	0	
1326	20	13.3	7.57	654	.5	0	
1331	25	13.3	7.54	650	.4	0	
1336	30	13.3	7.52	654	.3	0	
1341	35	13.3	7.49	655	.3	0	
1346	40	13.2	7.47	651	.3	0	
1351	45	13.2	7.46	651	.2	0	

DID WELL PUMP DRY? DESCRIBE: No.

SAMPLE TYPES: 2-40ml VOA + 4-1liter Amber + 2-1liter poly + PRP

splits

SAMPLE NUMBERS: See Traffic Report

REMARKS: Background HNu 1.0/Well HNu 1.0/O₂ 20.8%/LEL 0%

DIAMETR	2"	4"	5"	6"	8"
MULTIPLR	0.16	0.65	1.02	1.47	2.61

PROJECT: Himco Dump Superfund Site

WELL #: WT117B DATE: 9/26/95

TIME	GAL.S REM.	TEMP.	рН	COND.	TURB.	DIS. OXYGEN	REMKS
1356	50	13.3	7.45	654	0.3	0	
	,						
			· 		:		
	*4						
					:		
					: :		
							<u>.</u>
							·
	<u> </u>						
			:				

REMARKS: Sampling started at @ 1400, completed at @ 1415

PROJECT: Himco Dump Superfund Si	te
WELL #:WT118B	DATE: 9/25/95 TIME: 1020
WEATHER: Cloudy, cool 50°s	
WELL CONDITION: New (see W.L. she	eets)
WELL DEPTH (TOC): 65.14 ft.	WATER LEVEL (TOC): 14.36 ft.
WELL DIAMETER: 2 in. PUMP	DEPTH: 62.5 ft.
PURGE METHOD: Grundfos Pump	
MINIMUM PURGE VOLUME*: 50.82	gallons
PURGE RATE: 1.0 gpm	SAMPLERS INITIALS: MTB, SMS

TIME	GAL.S REM.	TEMP.	рН	COND.	TURB.	DIS. OXYGEN	REMKS
1055	٠0	13.0	6.78	1.76	60.2	0	
1102	5	12.8	6.75	1.75	10.4	0	
1107	10	12.7	6.73	1.79	8.8	0	
1112	15	12.6	6.70	1.78	4.0	0	
1117	20	12.6	6.68	1.78	3.8	0	
1122	25	12.5	6.66	1.78	2.2	0	
1127	30	12.6	6.65	1.79	3.8	0	
1132	35	12.6	6.65	1.78	2.8	0	
1137	40	12.6	6.64	1.78	2.7	0	
1142	45	12.6	6.63	1.79	1.5	0	

purp dry? describe: No. Purged about a total of 60

gallons

SAMPLE TYPES: 2-40ml VOA + 4-1liter Amber + 2-1liter poly + PRP

splits

SAMPLE NUMBERS: See Traffic Report

REMARKS: Background HNu 0.3/Well HNu 0.3/O2 20.8%/LEL 0%

DIAMETR	2"	4"	5"	6"	8"
MULTIPLR	0.16	0.65	1.02	1.47	2.61

PROJECT: Himco Dump Superfund Site

WELL #: WT118B DATE: 9/25/95

F						, =	,
TIME	GAL.S REM.	TEMP.	рН	COND.	TURB. (NTU)	DIS. OXYGEN	REMKS
1147	50	12.6	6.63	1.78	> 200*	0	*
1149	52	12.6	6.62	1.78	3.5	0	Grass
							in
							vial
						,	
						-	
[L]					L		

REMARKS: Sampling started at @ 1201, completed at @ 1216

APPENDIX H: LABORATORY DATA

DEPARTMENT OF THE ARMY Missouri River Division, Corps of Engineers Division Laboratory Omaha, Nebraska

TO

Chemical Oxygen Demand (COD)

LIMS#: 3509

Project: HIMCO Dump - Predesign

Extraction/Analysis Method: EPA Method 410.1

Date Analysed: 10 Oct 95
Analyst: D. Sanders

RESULTS (mg/L)

Analysis for	Result	Detection Limits
Chemical Oxygen Demand	19	5
Biological Oxygen Demand	4	Z

u: Below Detection Limit

Laboratory Comments:

Approved by: Rem. N. Anna Date: 10.11.95

TO

Volatile Organics Analysis

FAMIS No: 3509
Project: HIMCO Dump - Predesign

Customer Sample No: H1MC-WH20-0004
MRD Lab Sample No: 950929-H020
Sample Container(s): 2-40 mL vials
Sample Matrix: Water
EPA Method: SW-846, Method 8240
Dilution Factor: 1.00
pH: 2 Date Sample Taken: 27 Sep 95
Date Sample Received: 28 Sep 95
Date Analyzed: 06 Oct 95
Analyst: Leuschen
GC/MS File ID: water5801061
Instrument ID: GCMSA
Batch ID: 951003w1

	Analyte	Result	Units	Detection Limits
1.	Chloromethane	u	μg/L	10 10 10 10 2.0
2.	Bromomethane Vinyl Chloride	u	uā/L	10
3	Vinvl Chloride	ü	μά/L	10
ã.	Chloroethane	ū	7237T	īň
Ξ΄.	Dichloromethane	11	だきりだ.	Ťž n
₹.		u u	ださんだ	EQ.
Š.	Acetone	<u>u</u>	が済ん芸	20 0
۲٠	Carbon Disulfide	u u	花艺7 节	۷٠٧
g.	1,1-Dicutoroerueue	u	μg/,μ	2.0
9.	1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene (total) Chloroform	u	μg/ <u>L</u>	2.0
10.	1,2-Dichloroethene (total)	u	μg/,L	2.0
11.	Chloroform	u	$\mu q / L$	2.0
12.	2-Butanone	u	μα/L	50
13.	1,2-Dichloroethane 1,1,1-Trichloroethane	ū	и о ́/L	Ž.0
īā.	1.1 1-Trichloroethane	ũ	5.67f.	วีกั
16.	Carran Tarran Larida	ũ	773/7T.	žiň
1 Z.	Carnon recracultofine		######################################	25.0
15.	Digital Acetate	u 	#3/ 2	45
Ŧ	promodernane	u	#374	٧٠٧
18.	1,2-Dicuroropropane	u	μα/,⊾	2.0
19.	<u>cls-1,3-Dichloropropene</u>	u	μg/, <u>L</u>	2.0
20.	Trichloroethene	u	μg/,L	2.0
_ 21.	Vinyl Acetate Dichlorobromomethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane	u	μg/L	2.0
22.		u	μα/L	2.0
23.	1,1,2-Trichloroethane trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone	u	μ α /L	2.0
24	trans-1 3-Dichloropropere	ü	็นสั∕โ	วิกั
25.	Bromoform	ũ	<i>に</i> き/モ	2.4
56.	A-Mothyl-2 Pontanono	ü	たまり刊	2 · · ·
44.	3 Voranone	. ŭ	######################################	22
4/.	Z-nexanone		祝客心告	45
28.	1,1,2,2-Tetrachioroethane	u	<u>μ</u> α/,μ	2.0
29.	Tetrachioroethene	u	μg/, <u>L</u>	2.0
30.	1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene	u	μā/,μ	2.0
31.	Chlorobenzene	u	μġ/L	2.0
12345678901234567890123	Ethylbenzene	ü	μĞ/L	2.0
33	Styrene	ũ	űď/Ľ	2.0
34.	meta-Xvlene	ū	นีซี/ี่ นี้	2.0
34. 35.	ortho-/para-Xylene	ü	אאאאאאאאאאאאאאאאאאאאאאאאאאאאאאאאאאאא	00000 000 00000000 00000000 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Surrogate Standard	Recovery (%)	Acceptable	Spike(µg/L)
36. 37. 38.	1,2-Dichloroethane-d4 Toluene-d8 p-Bromofluorobenzene	90 103 101	76-114 88-110 86-115	50 50 50
J O.	b_promorrantonemente	*^	00-113	٥٠

u: Below Detection Limit

aira E. Splishal Date: 10 Oct.95

DEPARTMENT OF THE ARMY, Corps of Engineers Missouri River Division Laboratory, Omaha, Nebraska

TO

Volatile Organics Analysis

FAMIS No: 3509 Project: HIMCO Dump - Predesign

Date Sample Taken: 27 Sep 95
Date Sample Received: 28 Sep 95
Date Analyzed: 06 Oct 95 Sep 95
Analyst: Leuschen
GC/MS File ID: water5901062
Instrument ID: GCMSA
Batch ID: 951003w1 Customer Sample No: H1MC-WH20-0003
MRD Lab Sample No: 950929-H021
Sample Container(s): 2-40 mL vials
Sample Matrix: Water
EPA Method: SW-846, Method 8240
Dilution Factor: 1.00
pH: 2

		Analyte	Result	Units	Detection Limit
	1.	Chloromethane	u	אאאאאאאאאאאאאאאאאאאאאאאאאאאאאאאאאאאאא	10 10 10
	1234567.	Bromomethane	u	μg/L	10
	3.	Vinyl Chloride	u	μď/L	10
	4.	Chloroethane Dichloromethane	ų	ua/L	10 2.0
	5.	Dichloromethane	ù	u ď/L	_2.0-
	6.	Acetone	ū	におりて	50 2.0 2.0 2.0
	ž.	Carbon Disulfide	ũ	なる/元	້າ ດ
•	á.	1,1-Dichloroethene	ü	######################################	2.0
	8.	1,1-Dichloroethane		######################################	2.0
	٠, ٢	1,1-Dichioroechane	u	ለ ሽላት	4.0
	Ťñ.	1,2-Dichloroethene (total) Chloroform	u	⊬ ₫/,⊬	2.0
	ŢŢ.	CuTololol		μg/,Ŀ	_2.0
	12.	2-Butanone	u	μā/L	50
	8901234567 11111111111111	1.2-Dichloroethane	u	μ <mark>σ</mark> /L	2.0
	14.	1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate	ū	μά/L	2.ŏ '
	ĨŠ.	Carbon Tetrachloride	ū	<i>に</i> る/₹.	žiň
	าีล์ '	Vinvl Acetate	ũ	5737元	25.0
	ŤŽ.	Dichloropromomethane	ŭ	分裂が見	4 5 A
	46.	1 2 Diable controlle		ださんも	2.0
	4δ.	1,2-Dichiotopropane	u	# 9 / +	2.0
	73.	1,2-Dichloropropane ciş-1,3-Dichloropropene	u	μ g/,ὑ	2.0
	20.	Trichloroethene Dibromochloromethane	u u	μg/,≟	2.0
	21.	Dibromochloromethane	u	μg/L	2.0
	22.	Benzene 1,1,2-Trichloroethane	u	μα/L	2.0
	23.	1.1.2-Trichloroethane	u	μď/L	2.0
	24.	trans-1.3-Dichloropropene	ū	287 <u>T</u>	2.ŏ
	3Ē.	trans-1,3-Dichloropropene Bromoform	ũ	5.37元	້ວ ` ດັ
	3£.	4-Methyl-2-Pentanone	ŭ	ガネクギ	25.0
	45.	Z-MGCHAT_%-EGMCGHOME		だきりせ	42
	44.	2-Hexanone	u	₩ã\/ħ	45
	28.	1,1,2,2-Tetrachloroethane	u	ル あく デ	2.0
	29.	<u>Tetrachloroethene</u>	u	μg/,L	2.0
	30.	Tetrachloroethene Toluene	u	μā/L	2.0
7	31.	Chlorobenzene	ü	ルるノレ	2.0
	32.	Ethylbenzene	นิ	μď/L	$\bar{2}$. $\hat{0}$
	₹ ₹ `	Styrene_	ũ	だる/元	วิ.กั
	34	meta-Xylene	ü	だるケギ	วี.ัดั
	890123456789012345 1112222222222222222222222222222222222	ortho-/para-Xylene	ü	μg/L μg/L	00 000 000000000 000000000000000000000
		Surrogate Standard	Recovery (%)	Acceptable	
					······································
	36. 37.	1,2-Dichloroethane-d4	91	76-114	50 50 50
	37.	Toluene-d8	102	88-110	50
	38.	p-Bromofluorobenzene	102	86-115	E A

u: Below Detection Limit

David E. Splichel Date: 10 Oct. 95

DEPARTMENT OF THE ARMY Missouri River Division, Corps of Engineers Division Laboratory Omaha, Nebraska

Wet Chemistry

FAMIS No: 3509

Project: HIMCO Dump - Predesign

Date Sample Taken: 27 Sep 95 Date Sample Received: 28 Sep 95 Customer Sample No: H1MC-WH20-0001 MRD Lab Sample No: 950928-H062

TO

Sample Description: Water

Sample Container: 1-125 mL poly

Analyst: Deborah Dereshkevich Vicky Rich

Procedure	Analyses	Result mg/L	Detection Limits	Date Analyzed
EPA-340.2	Fluoride	nrq	0.1	
EPA-310.2	Bicarbonate (as CaCO ₃)	nrq	20	
EPA-310.2	Carbonate (as CaCO3)	urq	20	
EPA-160.1	Total Dissolved Solids	nrq	5	
EPA-160.2	Total Suspended Solids	4	4	03 Oct 95
EPA-180.1	Turbidity (FTU)	nrq	1	
EPA-150.1	рН	nrq		
EPA-120,1	Conductivity (µmhos/cm)	nrq	10	•

nrq: Not Requested
na: Not analyzed

u: Below Detection Limit

Laboratory Comments:

Approved By: Nem. N . Arra Date: 10/11/95